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Abstract

We construct a series of examples of Calabi-Yau manifolds in arbitrary dimension and com-
pute the main invariants. In particular, we give higher dimensional generalisation of Borcea-
Voisin Calabi-Yau threefolds.

We compute Hodge numbers of constructed examples using orbifold Chen-Ruan coho-
mology. We also give a method to compute a local zeta function using the Frobenius mor-
phism for orbifold cohomology introduced by Rosen.

As an application we observe that some of constructed Calabi-Yau manifolds are unira-
tional with a purely inseparable map from the projective space (Zariski manifold).
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Chapter 1

Introduction

This thesis is devoted to the study of arithmetic properties of Calabi-Yau manifolds obtained
as a quotient of Calabi-Yau type variety by an action of a finite group.

Calabi-Yau manifold is a complex, smooth, projective (Kähler) manifold X satisfying

(i) KX = X ,

(ii) H iX = 0 for 0 < i < n = dimX.

Equivalently

(i’) there exists a nowhere vanishing holomorphic n–form on X,

(ii’) there are no global holomorphic i–forms on X, for 0 < i < n.

There are several different definitions of Calabi-Yau varieties, by the famous Calabi-Yau
theorem, all definitions are “almost” equivalent. We shall stick to the above definition, in
particular we do not assume that a Calabi-Yau manifold is simply connected.

Calabi-Yau manifolds are subject of intensive studies, motivated by their possible appli-
cations to physics in the so called string theory. String theory predicts that our universe
is not just four-dimensional (time-space), but ten-dimensional. The extra six dimensions or
complex three “compactify” to a Calabi-Yau variety.

For a compact complex manifoldX we define a Hodge number ofX as the dimension of
the Dolbeult cohomology:

ℎi,j(X) = dimℂH
jΩi(X), for 0 ≤ i, j ≤ n ∶= dimX.
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Hodge numbers are very important invariants of a compact complex variety. The Euler char-
acteristic and the Betti numbers may be expressed as

i-th Betti number bi =
∑

p+q=i
ℎp,q(X),

the Euler characteristic e(X) = ∑

0≤p,q≤2n
(−1)p+qℎp+q(X).

The Hodge numbers ℎi,j(X) may be visualized as the Hodge diamond, all elliptic curves
and all K3 surfaces share the same Hodge diamonds

1
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Elliptic curve
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0

1

0
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0
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0

1

K3 surface
The situations is more complicated already in the case of n ≥ 3, there exists Calabi-Yau

threefolds with different Hodge diamonds, in fact we even do not know if the number of
Hodge diamonds of Calabi-Yau threefolds is finite.

Serre duality implies that Hodge diamond is invariant under central reflection (ℎp,q(X) =
ℎn−p,n−q(X)). By the Hodge symmetry the Hodge diamond is also invariant under the reflec-
tion in the vertical diagonal (ℎp,q(X) = ℎq,p(X)).

For a Calabi-Yau manifold X of dimension n,

ℎ0,0(X) = ℎ0,n(X) = ℎn,0(X) = ℎn,n(X) = 1 and ℎi,0(X) = ℎ0,i(X) = 0, for 0 < i < n,

hence the Hodge diamond in that case has the following shape:
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A three dimensional Calabi-Yau manifold has two non-obvious (not equal 0 or 1) Hodge
numbers

ℎ1,1(X) = ℎ2,2(X) = rank Pic(X) and ℎ2,1(X) = ℎ1,2(X) = dimDef(X),

the Hodge diamond of a Calabi-Yau threefold has the following shape
1
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0
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0

0
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Based on considerations in the string theory physicists made several predictions concern-
ing properties of Calabi-Yau manifolds, the most famous unsolved mathematical problem
inspired by the string theory is the Mirror Symmetry Conjecture. There exists several math-
ematical formulations of the Mirror Symmetry Conjecture, in the simplest version it predicts
that for a non-rigid Calabi-Yau threefoldX, there exists Calabi-Yau threefold Y such that the
Hodge diamonds of X and Y are rotated by 90◦ i.e.

ℎ1,1(X) = ℎ1,2(Y ) and ℎ1,2(X) = ℎ1,1(Y ).

Calabi-Yau manifolds can be considered as the higher dimensional counterpart of elliptic
curves, thus apart from the motivations coming from physics, Calabi-Yau manifolds provide
a very interesting framework to study from the point of view of classification of algebraic
varieties and arithmetic.

One of the most important method of constricting new examples of Calabi-Yau manifolds
are quotients of projective varieties by a finite group. Generally such quotients are often sin-
gular and we have to perform a resolution of singularities as a second step of the construction.

If we want to get a Calabi-Yau manifold as a result we have to consider a so called crepant
resolution of singularities which has no discrepancy in the canonical class. Unfortunately in
many natural situations no crepant resolution exists. Moreover if a crepant resolution exists,
often it is difficult to construct.

In Chapter 2 we shall collect and introduce necessarily information that we need in fur-
ther part of the presented thesis. We start by introducing basic properties of the quotient
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singularities ℂn/

G, where G ⊂ SLn(ℂ). Then we shall explain in details toric resolution of
singularities which provides a method of describing crepant resolution of the quotient singu-
larities in terms of subdivision of the junior simplex. We give explicit examples and discuss
known results particularly in dimensions 2, 3 and 4.

Next part of this chapter is devoted to an orbifold cohomology theory for finite quotients.
W. Chen and Y. Ruan introduced

H i,j
orb

(

X/

G
)

∶=
⨁

[g]∈Conj(G)

(

⨁

U∈Λ(g)
H i−age(g), j−age(g)(U )

)C(g)
,

where Conj(G) is the set of conjugacy classes of G, C(g) is the centralizer of g, Λ(g) denotes
the set of irreducible connected components of the fixed points set of g ∈ G and age(g) is an
integer associated to a matrix corresponding to linearized action of g.

An important application of the Chen-Ruan cohomology is the possibility of computing
Hodge numbers of a crepant resolution of singularities of a quotient variety, without referring
to an explicit construction of such a resolution. In fact

dimH i,j
orb

(

X/

G
)

= ℎi,j
(

X/

G
:)

,

where X/

G
:

is a crepant resolution of finite quotient X/

G.

Using Chen-Ruan orbifold cohomology we shall find a formula for Hodge numbers of a
quotient variety of type X1 ×X2 ×… ×Xn

/

ℤn−1
d
, where Xi are Calabi-Yau type manifolds

with purely non-symplectic ℤd-action.
In the further parts we shall recall stringy orbifold Euler characteristic for the quotient

of an manifold by the finite group. This formula was introduced by Dixon, Harvey, Vafa
and Witten in string theory as the hypothetical correct Euler characteristic formula of a finite
quotient. This formula, just like Chen-Ruan cohomology, may be used to compute the Euler
characteristic of a crepant resolution of finite quotients.

Then we briefly discuss topological and holomorphic Lefschetz numbers. We shall use
them in further parts of thesis to obtain new relation between parameters attached to Calabi-
Yau type varieties, especially K3 surfaces.

The next section is devoted to study the Zeta function of finite quotients of Calabi-Yau
manifolds. The computations of the Zeta function of a variety ismuchmore delicate. Merging
Chen-Ruan cohomology with Rosen’s result we find an effective methods of computation of
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the Zeta function of a quotient variety of typeX1 ×X2 ×… ×Xn
/

ℤn−1
d
,whereXi are Calabi-

Yau type manifolds with purely non-symplectic ℤd-action.
A large class of arithmetically significant Calabi-Yau threefolds was constructed as a res-

olution of singularities of a fiber product of rational elliptic surfaces. We end this chapter
with a short and necessary introduction to rational elliptic surfaces.

In Chapter three we focus on Cynk-Hulek construction of higher dimensional Calabi-Yau
manifolds involving elliptic curveEd with automorphism of order d = 2, 3, 4.Authors proved
that the quotient of En

d by a group

{(m1, m2,… , mn) ∈ ℤn
d ∶ m1 + m2 +…+ mn = 0} ≃ ℤn−1

d

which preserves the canonical bundle !End admits a crepant resolution of singularities

En
d
/

ℤn−1
d

:
.

Consequently they obtained n-dimensional Calabi-Yau manifold.
The aim of this chapter is to construct a toric crepant resolution of singularities of Calabi-

Yau manifold constructed by Cynk-Hulek which uses elliptic curve E6 admitting purely non-
symplectic automorphism of the missing order 6. Iterated approach originally used by Cynk
and Hulek cannot be adopted in the case d = 6. Moreover using introduced methods in
chapter 2, we compute Hodge numbers and local Zeta functions of all resulting Calabi-Yau
manifolds.

In the next chapter we shall use Cynk-Hulek construction in order to extend result of
Katsura-Schuett to obtain higher dimensional Calabi-Yau manifolds, which are Zariski va-
rieties. As a corollary we obtained in any odd characteristic p ≢ 1 (mod 12) a unirational
Calabi-Yau manifold of arbitrary dimension.

The fifth chapter focus on the classical Borcea-Voisin construction of Calabi-Yau three-
folds which produces important examples in context of mirror symmetry. LetE be an elliptic
curve and let S be a K3 surface, both admitting non-symplectic involutions �E and �S , re-
spectively, and consider the quotientS × E/�S × �E .Obviously such quotient is singular and
have cyclic singularities. A crepant resolution of singularities S × E/�S × �E

:
is a Calabi-

Yau threefold with Hodge numbers

ℎ1,1 = 11 + 5N ′ −N and ℎ1,2 = 11 + 5N −N ′,

5



where N is the number of curves in Fix(�S) and N ′ denotes the sum of genera of all curves
in fixed locus. Voisin used Nikulin’s classification to show that constructed threefolds have
a “mirror partner” for all but one of the examples withN ′ ≠ 0.

A. Cattaneo and A. Garbagnati generalized the Borcea-Voisin construction allowing non-
symplectic automorphism of aK3 surfaces of higher orders. They computed Hodge numbers
of resulting threefolds by careful study of an explicit construction of a crepant resolution.

We shall give higher dimensional generalisation of the classical Borcea-Voisin threefold
by considering quotient Sd × En−1

d
/

Gd,n
, for Ed and K3 – surface admitting a purely non-

symplectic automorphism of order d = 2, 3, 4, 6. We compute Hodge numbers and the Zeta
function of resulting varieties. Moreover in the last section we discuss other similar construc-
tions for future study.

In the final chapter we discuss Schoen’s construction of Calabi-Yau threefolds as a res-
olution of singularities of the fiber product of rational elliptic surfaces. We briefly discuss
known results and give a method of computation of the Hodge numbers of standard Kummer
fiberwise construction by using Chen-Ruan cohomology formula.

Summary of the results

The main original results presented in this thesis are the following:

• Formula for Hodge numbers of a crepant resolution (providing it exists) of the quotient
X1 ×X2 ×… ×Xn

/

ℤn−1
d
, where Xi are Calabi-Yau type manifolds with purely non-

symplectic ℤd-action (Theorem 2.3.3).

• Formula for the Zeta function of the crepant resolution (providing it exists) of the quo-
tient X1 ×X2 ×… ×Xn

/

ℤn−1
d
, where Xi are Calabi-Yau type manifolds with purely

non-symplectic ℤd-action (Theorem 2.7.1).

• Construction of a toric crepant resolution of singularities of the quotient En
6
/

ℤn−1
6
,

which completes the construction of Cynk-Hulek for elliptic curvesE6 admitting purely
non-symplectic automorphism of order 6 (Theorem 3.2.3).

• Two methods of computation of Hodge numbers of Cynk-Hulek varieties Xd,n (Sec-
tion 3.3).

• Computation of the Zeta function of Cynk-Hulek varieties Xd,n (Section 3.4).
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• Construction of new arbitrary dimensional Zariski Calabi-Yau manifolds in character-
istic p ≢ 1 (mod 12) (Theorems 4.3.3, 4.3.5, 4.3.7).

• Higher dimensional generalisations of classical Borcea-Voisin construction, computa-
tion of their Hodge numbers and the Zeta function (Chapter 5).

• Introducing new methods of computations of Hodge numbers of Kummer fibrations of
rational elliptic surfaces (Chapter 6).

Acknowledgement
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Chapter 2

Preliminaries

In this chapter we shall collect basic information that we need in further parts of present the-
sis. We shall recall basic properties of canonical singularities. Then we introduce necessarily
background form toric geometry to analyse later existence of a crepant resolution of singular-
ities of the quotient ℂn/

G,whereG is a finite group acting on ℂn. We give explicit examples
and collect known results.

Next part of this chapter is devoted to the orbifold cohomology theory for finite quotients
introduced by W. Chen and Y. Ruan and stringy Euler characteristic. Also we briefly recall
basic properties of the zeta function of an algebraic variety and give explicit examples in
dimensions 2 and 3.

We end this chapter by proving formulas for Hodge numbers and Zeta function of a quo-
tient variety of typeX1 ×X2 ×… ×Xn

/

ℤn−1
d
, whereXi are Calabi-Yau type manifolds with

purely non-symplectic ℤd-action.

§ 2.1 Toric resolution of singularities

2.1.1 Canonical singularities

Assume X is a normal, quasi-projective variety defined over an algebraically closed field of
characteristic 0.
Definition 2.1.1. Pair (X:, �), where � ∶ X: → X is a proper, regular and birational map and
X
: is a smooth algebraic variety, is called a resolution of singularities of X if

�||
|�−1(Reg(X))∶ �

−1 (Reg(X))→ Reg(X)

is an isomorphism, where Reg(X) denotes the set of regular points of X.

9



By the famous result of Hironaka ([Hir64]), every algebraic variety over algebraically
closed field of characteristic 0 has a resolution of singularities.
Definition 2.1.2. A varietyX has canonical singularities if and only if it satisfies the follow-
ing two conditions
(i) the Weil divisor rKX is Cartier for some integer r ≥ 1,

(ii) for a resolution f ∶ X: → X of singularities of X, and all exceptional prime divisors
{Ei}ni=1 of f we have the following equality

rKX
: = f ∗

(

rKX
)

+
n
∑

i=1
aiEi,

where ai are non-negative rational numbers for 1 ≤ i ≤ n.

The smallest r ≥ 1 for which rKX is Cartier in a neighbourhood of singular point P ∈ X
is called the index of P .

The surface canonical singularities are exactly nonsingular points, together with so called
Du Val surface singularities (see [Reib] for a proof) i.e. the hypersurface singularities given
by the following equations:

Type An∶ x2 + y2 + zn+1 = 0 for n ≥ 1,
Type Dn∶ x2 + y2z + zn−1 = 0 for n ≥ 4,
Type E6∶ x2 + y3 + z4 = 0,

Type E7∶ x2 + y3 + yz3 = 0,

Type E8∶ x2 + y3 + z5 = 0.

Du Val singularities are also known as simple surface singularities, rational double points or
Kleinian singularities.

The ℚ-divisor
ΔX ∶=

1
r

n
∑

i=1
aiEi

which satisfiesKY = f ∗KX +ΔX is called discrepancy of f. In the Minimal Model Program
crucial role play two types of singularities:

• X has terminal singularities if ai > 0 for 1 ≤ i ≤ n,

• X has log-terminal singularities if ai > −1 for 1 ≤ i ≤ n.

10



In our constructions we use resolution of singularities X: which is a variety with trivial
canonical divisor KX (Calabi-Yau type condition).
Definition 2.1.3. A resolution f ∶ X: → X of a canonical singularities is crepant if ai = 0
for 1 ≤ i ≤ n i.e.

KX
: = f ∗KX .

The name “crepant” was coined by M. Reid by removing “dis” from the word “dis-
crepant”, to indicate that the resolutions have no discrepancy in the canonical class.

2.1.2 Quotient singularities

Let G ⊆ GLn(ℂ) be a finite subgroup. By the Hilbert basis theorem, the ring of invariants

ℂ[X1, X2,… , Xn]G

is finitely generated. Consider the quotient variety
ℂn/

G ∶= Spec ℂ[X1, X2,… , Xn]G.

Definition 2.1.4. Singularities of ℂn/

G are called quotient singularities.
Any Du Val surface singularity is isomorphic to ℂ2/

G, where G ⊂ SL2(ℂ) is a finite
group namely G is of one of the following types

Type An: ℂ2/

G, where G ∶= �n+1 is the cyclic group of order n with generators:
(

�n+1 0
0 � nn+1

)

, where �n+1 is a primitive (n + 1)st root of unity.

Type Dn: ℂ2/

G, where G ∶= D4(n−2) is the binary dihedral group of order 4(n − 2)
generated by:

�2(n−2) and
(

0 i
i 0

)

, where i =
√

−1.

Type E6: ℂ2/

G, where G ∶= T24 is the binary tetrahedral group of order 24 generated
by:

D8 and 1
√

2

(

�8 �38
�8 �78

)

.

Type E7: ℂ2/

G, where G ∶= O48 is the binary octahedral group of order 48 generated
by:

T24 and
(

�38 0
0 �58

)

.
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TypeE8: ℂ2/

G,whereG ∶= I120 is the binary icosahedral group of order 120 generated
by:

1
√

5

(

�45 − �5 �25 − �
3
5

�25 − �
3
5 �5 − �

4
5

)

and 1
√

5

(

�25 − �
4
5 �45 − �5

1 − �5 �35 − �5

)

.

In fact the above list is a complete list of conjugacy classes of all non-trivial finite sub-
group of SL2(ℂ) (see [LW12]). Moreover, groups T24, O48 and I120 are obtained as the lift of
the symmetry group of corresponding Platonic solid under the double cover SU(2) → SO(3).

Definition 2.1.5. An element g ∈ G is a quasi-reflection if it is of finite order and g− idn has
rank 1, where idn denotes the identity matrix n × n.

A group G which does not contain any quasi-reflection is called small.

Theorem 2.1.6 ([ST54], [Che55]). The quotient algebraic variety ℂn/

G is smooth iff G is

generated by quasi-reflection, and in that case ℂ
n/

G ≃ ℂn.

Therefore in the study of the quotient singularity ℂn/

G, where G ⊆ GLn(ℂ) one may
restrict to quotient singularities for small groups G.

Definition 2.1.7. An algebraic variety is Gorenstein iff it is Cohen-Macaulay and the canon-
ical sheaf !X is invertible.

Theorem 2.1.8 ([Rei80]). Gorenstein quotient singularities are canonical.

Theorem 2.1.9 ([Rei80], [Tai82]). Let G ⊂ GLn(ℂ) be a small finite subgroup which acts

linearly on ℂn. Then ℂn/

G has canonical singularities iff any element g ∈ G has a fixed

order d and the action of g on ℂn has the following linearisation

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�a1d 0 0 … 0
0 �a2d 0 … 0

⋮ ⋱

0 0 0 … �and

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where 0 ≤ ai < d and
n
∑

i=1
ai ≥ d. Let us denote such an element g by 1

d
(a1, a2,… , an).

Moreover

• an element g for which
n
∑

i=1
ai = d corresponds to a crepant exceptional divisor of a

resolution ℂ
n/

G,

12



• ℂn/

G has terminal singularities iff
n
∑

i=1
ai > d for every g ∈ G.

Theorem 2.1.10 ([Hin76], [Wat74]). Let G ⊂ GLn(ℂ) be a small finite subgroup, then the

following three conditions are equivalent

1. ℂ
n/

G is Gorenstein,

2. d ∣
n
∑

i=1
ai for every g ∈ G,

3. G ⊂ SLn(ℂ).

Definition 2.1.11. Let g ∈ GLn(ℂ) be a matrix of finite order and let e2�ia1 , e2�ia2 ,… , e2�iam

be eigenvalues of g for some a1, a2,… , am ∈ [0, 1) ∩ ℚ. The sum
m
∑

i=1
ai is called the age of

g and is denoted by age(g). Element g with age(g) = 1 is called junior.

The age of G is an integer if and only if det g = 1 i.e. g ∈ SLn(ℂ). Moreover

age(g) + age(g−1) = rank(g − In) ∈ ℤ.

The age of the element g ∶= 1
d
(a1, a2,… , an) (c.f. 2.1.9) is equal to

age(g) = 1
d

n
∑

i=1
ai.

2.1.3 Toric resolution of singularities

This section is devoted to introduce necessarily background from toric geometry. For a com-
plete exposition see [Ful93] or [CLS11].

Let N be a free ℤ-module of rank n and let Nℝ ∶= N ⊗ℤ ℝ ≃ ℝn with canonical basis
e1, e2,… , en.

Definition 2.1.12. A cone � inNℝ is said to be strongly convex polyhedral if it is generated
by finitely many elements of the latticeN over ℝ≥0.

A cone is called nonsingular if it is generated by part of a basis for the lattice.
LetM ∶= Hom(N,ℤ) be a dual lattice ofN andMℝ ∶=M ⊗ℤ ℝ. The dual cone

�̌ ∶= {m ∈Mℝ∶ ⟨m, x⟩ ≥ 0 for all x ∈ �} ⊂ Mℝ

13



leads to a finitely generated ℂ-algebra ℂ[�̌ ∩M] which determines affine toric variety

XN,� ∶= Spec ℂ[�̌ ∩M].

Moreover XN,� is smooth iff cone � is nonsingular, in that case

XN,� ≃ ℂdim(�) × ℂ∗n−dim(�),

where dim(�) denotes the dimension of the cone � i.e. dimension of ℝ� as vector space
over ℝ.
Definition 2.1.13. A fan is a finite collection of strongly convex polyhedral cones  ∶=

{�i}i∈I ⊂ Nℝ such that
1) any face of a cone � ∈ , i.e. � ∩Hm for some m ∈ �̌ andHm ∶= {x ∈ Nℝ∶ ⟨m, x⟩ =

0}, is also a cone in ,
2) any two cones in  intersect in a common face.

Definition 2.1.14. The toric variety XN, associated to a fan  is the union of XN,� for each
� ∈  with glued pairs (XN,�1 , XN,�1) along XN,�1∩�2 for any �1, �2 ∈ .

Properties of the fan determine geometric properties of the corresponding toric variety.
Theorem 2.1.15 ([CLS11], Thm. 11.1.9). Every fan  ⊂ Nℝ has a refinement ′ such that

• ′ is nonsingular (every cone � ∈ ′ is nonsingular),

• ′ contains every nonsingular cone of ,

• The toric morphism � ∶ X′,N → X,N is a projective resolution of singularities.

The refinement ′ is obtained form  by a sequence of so called star subdivisions.
Now let G ⊂ GLn(ℂ) be a finite abelian group of order d. Any element of G can be

written as 1
d
(a1, a2,… , an) for some 0 ≤ ai < d. Let �∶ ℂn → ℂn/

G be the quotient map.
There exists a morphism of toric varieties

�: ∶ XN
:
,� → XN,�

corresponding to �, whereN: is the free ℤ-module of rank n such thatN ⊂ N
: andN

:
/

N ≃

G. Denote by g: ∶= 1
d
(a1, a2,… , an) a primitive element in N: which is a lift of an element

g = 1
d
(a1, a2,… , an).

14



For any refinement ′ of  by Lemma 11.4.10 in [CLS11] it follows that

KXN
:
,′
= �∗

(

KXN,

)

+
∑

�∈(1)
a�E� ,

where (1) denotes the collection of 1 dimensional cones in , E� is an exceptional divisor
corresponding to �, a� ∶= age(g�) − 1, where g� is the primitive element in �.

Therefore if Σ is a subdivision of  spanned by junior points, then if XΣ,N
: is smooth,

then it is a crepant resolution of ℂn/

G. In other words: crepant resolution of ℂn/

G can be
identified with equal-volume triangulation of

Δn ∶= convex hull of e1, e2,… , en inN:,

by junior points inN:, Δn is called junior simplex.

2.1.4 Crepant resolution of ℂ
n/

G
Dimension n = 2

In dimension 2, a crepant resolution of a quotient by a subgroup of Sl2(ℂ) always exists and
is unique as follows from the classical result of F. Klein ([Kle73]).
Theorem 2.1.16. Let G be a finite subgroup of Sl2(ℂ). The surface ℂ

2/

G admits a unique

crepant resolution.

The quotients ℂ2/

G are the Kleinian singularities of type A, D, E described in 2.1.2.
Consider surface cyclic quotient singularities. Since we restrict our considerations to

small groups, it is enough to restrict to only cyclic quotients of type 1
r
(1, a)with gcd(a, r) = 1.

These singularities may be described by using Hirzebruch-Jung resolutions for details see
[Reia].
Definition 2.1.17. Let r > a > 0 be coprime integers. Then the Hirzebruch-Jung continued

fraction of r
a
is the expression

r
a
= a1 −

1
a2 −

1
a3−…−

1
ak

=∶ [a1, a2,… , ak],

for some integers ai ≥ 2.
Consider lattice L ∶= ℤ2 + 1

r
(1, a)ℤ containing the lattice ℤ2 as a sublattice of index r.

It’s other cosets are represented by r− 1 lattice points 1
r
(i (mod r), ia (mod r)) contained in

15



the unit square of the positive quadrant spanned by (0, 1) and (1, 0), we shall denote this cone
by �.

Now take Newton polygon of all non-zero lattice points inside this square:

(2.1.1) e0 = (0, 1), e1 =
1
r
(1, a), e2, … , ek+1 = (1, 0).

Then we have the following properties:
• Points ei, ei+1 for i = 0,… , k form an oriented basis of L,
• For any i = 1,… , k we have

ei+1 + ei−1 = aiei,

where
r
a
= [a1, a2,… , ak].

To perform the resolution we subdivide the positive quadrant with rays generated by e0,
e1,… , ek+1. Denote by  ⊂ ′ the corresponding fans. The refinement  ⊂ ′ gives a toric
morphism X′,L: → X,L called Hirzebruch-Jung resolution.
Theorem 2.1.18 ([Reia]). Consider cyclic singularity ℂ

2/

ℤr
of type 1

r
(1, a). For each i =

0, 1,… , k, let �i(x, y), �i(x, y) be monomials forming the basis of

{(�, �)∶ � + a� ≡ 0 (mod r)} ⊂ ℤ2

dual to the basis ei, ei+1 from 2.1.1. Then ℂ2/

ℤr
has a resolution of singularities ℂ

2/

ℤr

:

such that the map

ℂ2 → ℂ2/

ℤr

:

is given in affine charts by

(x, y)→ (�i(x, y), �i(x, y)).

Remark 2.1.19. If 1 + a = r, then by 2.1.9 theorem 2.1.18 gives a subdivision of 2-simplex
connecting (0, 1) and (1, 0) into r equal-length segments and hence crepant resolution of sin-
gularity 1

r
(1, a).

Example 2.1.20. Consider the cyclic singularity of type 1
6
(1, 5).We see that 6

5
= [2, 2, 2, 2, 2],

the Newton polygon contains junior points

e0 = (0, 1), e1 =
1
6
(1, 5), e2 =

1
6
(2, 4), e3 =

1
6
(3, 3), e4 =

1
6
(4, 2), e5 =

1
6
(5, 1), e6 = (1, 0).

16



(1, 0) −→ y6

(0, 1) −→ x6

1
6 (1, 5) −→

x5

y

1
6 (2, 4) −→

x4

y2

1
6 (3, 3) −→

x3

y3

1
6 (4, 2) −→

x4

y2

1
6 (5, 1) −→

x5

y

Passing to the lattice of invariant monomials, we mark rational function in each junior
point (1-dimensional simplex) which corresponds to a generator of a dual cone ⟨ei, ei+1⟩ for
i = 0, 1,… , 5. Each rational function (or inverse one) is a coordinate of inverse map of a
resolution of 1

6
(1, 5) given in affine charts by

(

x6,
y
x5
)

,
(

x5

y
,
y2

x4

)

,
(

x4

y2
,
y3

x3

)

,
(

x3

y3
,
y4

x2

)

,
(

x2

y4
,
y5

x

)

or
(

x
y5
, y6

)

.

Dimension 3

In dimension 3 situation is more subtle. A crepant resolution always exist but it is not unique.
Any two crepant resolutions are related by a sequence of the so called flops (for a details see
[Kol89]).
Theorem 2.1.21 ([MOP87], [Roa96]). Let G be a finite subgroup of Sl3(ℂ). Then ℂ3/

G

admits a crepant resolution ℂ
3/

G
:

. Moreover

e
(

ℂ3/

G
:

)

= number of conjugacy classes of G.

Roan gave first complete proof of the crepant resolution of singularities in dimension 3
and is based on case by case analysis of the following classification of conjugacy classes of
finite subgroups of SL3(ℂ):

Type A: A subgroup consisting of matrices
⎛

⎜

⎜

⎝

� 0 0
0 � 0
0 0 


⎞

⎟

⎟

⎠

where �, �, 
 ∈ ℂ.
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Type B: A subgroup consisting of matrices
⎛

⎜

⎜

⎝

� 0 0
0 a b
0 c d

⎞

⎟

⎟

⎠

where �, a, b, c, d ∈ ℂ.

Type C: A subgroup generated by an abelian groupH ∈Type A and

T ∶=
⎛

⎜

⎜

⎝

0 1 0
0 0 1
1 0 0

⎞

⎟

⎟

⎠

.

Type D: A subgroup generated by an abelian groupsH, T ∈ Type C and

R ∶=
⎛

⎜

⎜

⎝

a 0 0
0 0 b
0 c 0

⎞

⎟

⎟

⎠

, with a, b, c ∈ ℂ such that abc = 1.

Type E: A subgroup of order 108 generated by T and

S ∶=
⎛

⎜

⎜

⎝

1 0 0
0 �3 b
0 0 �23

⎞

⎟

⎟

⎠

and V ∶= 1
√

−3

⎛

⎜

⎜

⎝

1 1 1
1 �3 �23
1 �23 �3

⎞

⎟

⎟

⎠

.

Type F : A subgroup of order 216 generated by Type E and

1
√

−3

⎛

⎜

⎜

⎝

1 1 �23
1 �3 �3
�3 1 �3

⎞

⎟

⎟

⎠

.

Type G: A subgroup of order 648 generated by Type E and
⎛

⎜

⎜

⎝

�49 0 0
0 �49 0
0 0 �9

⎞

⎟

⎟

⎠

.

TypeH : Icosahedral group of order 60 generated by T and

E2 ∶=
⎛

⎜

⎜

⎝

1 0 0
0 −1 0
0 0 −1

⎞

⎟

⎟

⎠

and E3 ∶=
1
2

⎛

⎜

⎜

⎝

−1 l− l+
l− l+ −1
l+ −1 l−

⎞

⎟

⎟

⎠

, where l± ∶= 1
2

(

−1 ±
√

5
)

.

TypeH∗: A subgroup of order 180 generated by TypeH and

W ∶=
⎛

⎜

⎜

⎝

�3 0 0
0 �3 0
0 0 �3

⎞

⎟

⎟

⎠

.

Type I : Simple group of order 180 generated by T and

S7 ∶=
⎛

⎜

⎜

⎝

�7 0 0
0 �27 0
0 0 �47

⎞

⎟

⎟

⎠

and V ∶= 1
√

−7

⎛

⎜

⎜

⎝

�47 − �
3
7 �27 − �

5
7 �7 − �67

�27 − �
5
7 �7 − �67 �47 − �

3
7

�7 − �67 �47 − �
3
7 �27 − �

5
7

⎞

⎟

⎟

⎠

.
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Type I∗: Group of order 504 generated by Type I and W.
Type J : Group of order 1080 generated by TypeH and

E4 ∶=
⎛

⎜

⎜

⎝

−1 0 0
0 0 −�3
0 −�23 0

⎞

⎟

⎟

⎠

.

Any crepant resolution of X = ℂ3/

G determines a triangulation of the junior 3-simplex
Δ3 into |G| equal volume simplexes, following [CR02] we describe an algorithm for subdi-
viding Δ3 into appropriate equal area triangles.

Let G ⊆ SL3(ℂ) be a finite abelian subgroup. Denote by L the lattice containing ℤ3 and
generated by all elements in G of the form 1

r
(a1, a2, a3). Let Δ3 be the junior simplex in L

with vertices

e1 =
1
r
(r, 0, 0) = (1, 0, 0), e2 =

1
r
(0, r, 0) = (0, 1, 0), e3 =

1
r
(0, 0, r) = (0, 0, 1).

Let ℝ2
Δ3

be the affine plane spanned by Δ3 and ℤ2
Δ3
∶= L ∩ ℝ2

Δ3
its affine lattice. Take

each ei as an origin.
For i ∈ {1, 2, 3} (we use indices mod 3) consider the convex hull of the lattice points in

Δ3 ⧵ {ei}:

fi,0 fi,1 … fi,ki+1

primitive vector
along the eiei−1

primitive vector
along the eiei+1

Then
fi,j−1 + fi,j+1 = bi,jfi,j for j = 1, 2,… , ki,

hence
ℤ2 + ℤ ⋅ 1

ri
(1, bi) = ℤ2(fi,0, fi,ki+1) + ℤ ⋅ fi,1,

where ri, bi be coprime integers defined as Hirzebruch-Jung continued fraction
ri
bi
= [bi,1, bi,2,… , bi,ki].

According to previous section, drawing lines eifi,j we get a fan of a crepant resolution of
singularity 1

ri
(1, bi).
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Algorithm 2.1.22.

1. For any i ∈ {1, 2, 3} and j ∈ {0, 1,… , ki} draw the line Li,j out of ei equal to eifij .
Mark the label bi,j above Li,j .

2. Extend Li,j by the following rule:
• if two or more lines meet, the line with greater label (bi,j) is extended with a new

label bi,j − 1,
• if two or more lines meet with equal label, the process ends for these lines.

3. Continue the process from 2. as long as it is possible.
From the algorithm 2.1.22 we obtain triangulation of the junior simplexΔ3 into r-regular

triangles i.e. affine equivalent to the triangle with vertices (0, 0), (r, 0), (0, r) for some r ≥ 1,
called the side of  .

Finally we make so called regular tessellation of r-regular triangle i.e. subdivision of
r-regular triangles (needed only if r > 1) into r2 basic triangles with sides parallel to sides
Δ3.

Let us denote the final triangulation (toric fun) determined by tessellation of all r-regular
triangles in Δ3 by C:. In local coordinates the map from ℂ3 to the resolution X′,L: of singu-
larity 1

r
(a1, a2, a3) are given in affine charts by dual cone to any triangle in the triangulation

C
:
.

Example 2.1.23. The analysis of the following examplewill be crucial in Chapter 3. Consider
1
6
(1, 1, 4) singularity. One can check that points 1

6
(1, 1, 4), 1

6
(2, 2, 2) and 1

6
(3, 3, 0) are the only

junior points in Δ3 (except vertices of the simplex). Therefore by the algorithm 2.1.22 we
can add to Δ3 the following data:

2
2

6

4

2

2
2

(
x
y ,

y2

z2 , z
3
)
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In fact 6
4
= [2, 2], 6

1
= [6] and

1
6
(6, 0, 0) + 1

6
(0, 6, 0) = 6 ⋅ 1

6
(1, 1, 4),

1
6
(0, 0, 6) + 1

6
(2, 2, 2) = 2 ⋅ 1

6
(1, 1, 4),

1
6
(1, 1, 4) + 1

6
(3, 3, 0) = 2 ⋅ 1

6
(2, 2, 2),

1
6
(3, 3, 0) + 1

6
(1, 1, 4) = 2 ⋅ 1

6
(2, 2, 2),

1
6
(2, 2, 2) + 1

6
(0, 0, 6) = 2 ⋅ 1

6
(1, 1, 4).

Dual cone to any triangle in the above triangulation of Δ3 (into 6 triangles) corresponds
to affine chart in local coordinates of the map

ℂ3 → ℂ3/
1
6
(1, 1, 4).

Since some rational function may corresponds to a common side of two triangles it is conve-
nient to equipped this side with an arrow. Then we read rational functions in accordance with
the agreed orientation of all triangles (includingΔ3), opposite arrow (to the fixed orientation)
on the side indicates inverse of the rational attached to this side in the affine chart.

x6

z3

z3

y6

z2/y2

y4/z

x/y

x/y

x/y

z2/x2

x4/z

(
x
y , z

3, y
2

z2

)

For example; consider grey triangle. Take duals in monomial ring to the columns of the
following matrix

⎛

⎜

⎜

⎝

1 0 0
2∕6 2∕6 2∕6
3∕6 3∕6 0

⎞

⎟

⎟

⎠

−1

=
⎛

⎜

⎜

⎝

1 0 0
−1 0 2
0 3 −2

⎞

⎟

⎟

⎠

obtaining the following rational functions functions x
y
, z3, y

2

z2
opposite to the vertices (1, 0, 0),

1
6
(2, 2, 2), 1

6
(3, 3, 0), respectively.
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One can directly read that inverse map to the resolution are given in affine charts as
(

x6, z
x4
,
y
x

)

,
(

x4

z
, z

2

x2
,
y
x

)

,
(

x2

z2
, z3,

y
x

)

,
(

x
y
, z
y4
, y6

)

,
(

x
y
, z

2

y2
,
y4

z

)

or
(

x
y
, z3,

y2

z2

)

.

Dimension d ≥ 4

The following example shows that in dimensions d ≥ 4 the existence of any crepant resolution
coming from toric resolution is delicate.

Example 2.1.24. Let G = {− id, id} ⊆ Sl4(ℂ). Then ℂ4/

G does not have a toric crepant
resolution of singularities.

Proof. There are no junior points in group G ≃ ℤ2, hence Δ4 cannot be subdivided into 2
equal-volume polytopes spanned by junior points.

Example 2.1.24 can be easily generalize to the following one:

Example 2.1.25. Let G be the order d cyclic group

G = ⟨�d ⋅ id⟩, 1 < d < n, d ∣ n.

Then ℂn/

G has no toric crepant resolution.

In fact ℂn/

G has no crepant resolution, because any such resolution of singularities is
automatically toric (see [Roa97]).

S. Davis in her PhD [Dav12] presented several approaches to the problem of existence
of crepant resolution in 4 dimensional case. She gave also algorithm which determines, for
quotients by cyclic subgroup of Sl4(ℂ) whether or not a crepant resolution exists.

It seems that junior points are crucial in the problem of existence of crepant resolution of
a quotient ℂn/

G:

Theorem 2.1.26 ([Yam18]). Let G be a finite subgroup G ⊂ SLn(ℂ), then if ℂ
n/

G has a

crepant resolution then G is generated by junior elements.

In [DH97] D. I. Dais and M. Henk proved that 1-parameter quotient cyclic singularity

(2.1.2) 1
r

(

r − (n − 1), 1, 1,… , 1
⏟⏞⏞⏟⏞⏞⏟

n−1

)
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has (unique) crepant resolution iff r ≡ 0 (mod n − 1) or r ≡ 1 (mod n − 1).
Much more study has been done in order to find necessary and sufficient condition for

cyclic (2-parameter) quotient singularities of the the form

(2.1.3) 1
r

(

a, r − a − (n − 2), 1, 1,… , 1
⏟⏞⏞⏟⏞⏞⏟

n−2

)

to have a crepant resolution.
Such condition has been given by D. I. Dais, U. U. Haus and M. Henk in [DHH98] and

different one by S. Davis T. Logvinenko and M. Reid in [SR12] (see also project webpage:
http://www.cantab.net/users/t.logvinenko/Traps/index.html).
Theorem 2.1.27 ([SR12]). Consider 2-parameter cyclic singularity

(2.1.4) 1
r
(a, b, 1, 1,… , 1).

Then:

• if gcd(r, a, b) > 1, then 2.1.4 has a crepant resolution,

• if gcd(r, a, b) = 1 and gcd(r, a) > 1 or gcd(r, b) > 1, then 2.1.4 has a crepant resolution
iff

1
r
(0, k1, r1,… , r1) and 1

r
(k2, 0, r2,… , r2)

are junior points with

r = r1 gcd(r, a) = r2 gcd(r, b) = k1 + r1(n − 2),

• if gcd(r, a) = 1 i.e. we treat only the case

1
r
(0, d, c,… , c),

where r = 1+ d + (n−2)c. In that case 2.1.4 has a crepant resolution iff the following

two condition are satisfying:

– the point nearest to the x1 = 0 face of junior simplex is the junior point

1
r
(0, d, c,… , c),

– theHirzebruch-Jung continued fraction of r
d
has every entry congruent to 2 (mod n−

2).
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In [DHZ06] D. I. Dais, M. Henk and G. M. Ziegler proved that for all k ≥ 2 and l ≥ 3

the following quotient singularity
1

(

kl−1
k−1

)

(

1, k, k2,… , kl−2, kl−1
)

admits a crepant resolution.
Recently K. Sato and Y. Sato in [SS20] used generalization of Hirzebruch-Jung continued

fractions introduced by T. Ashikaga in [Ash19] to find necessary and sufficient condition for
the so-called Fujiki-Oka resolutions (see [Ash19], [Oka87]) of Gorenstein abelian quotient
singularities to be crepant in all dimensions.
Definition 2.1.28. Let r, n ≥ 1 be integers and let a = (a1,… , an) ∈ ℤn with 0 ≤ ai ≤ r − 1

for 1 ≤ i ≤ n. An n-dimensional proper function is the following symbol
a
r
∶=

(a1,… , an)
r

.

If at least one coordinate of a is 1, then a
r
is called semi- unimodular proper fraction.

The age of an element (a1,… , an)
r

is defined to be

age
(

(a1,… , an)
r

)

= 1
r
∑

i=1
ai.

Definition 2.1.29. Let a
r
=
(1, a2,… , an)

r
be a semi-unimodular proper fraction. Then for

2 ≤ i ≤ n, the i-th remainder map is defined as follows:

Ri

(a
r

)

=

⎧

⎪

⎨

⎪

⎩

(1, a2ai ,… , ai−1ai ,−rai , ai+1ai ,… , anai)
ai

, if ai ≠ 0,
∞ if ai = 0,

where xy denotes x (mod y) ∈ {0, 1,… , y − 1}, we put also Ri(∞) = ∞.

The remainder polynomial is a formal polynomial with variables x2,… , xn defined by

R∗
(a
r

)

∶=
(a
r

)

+
∑

(i1,i2,…,il)∈{2,3,…,n}l ,
l≥1

(Ril◦… ◦Ri2◦Ri1)
(a
r

)

⋅ xi1xi2… xil ,

we exclude terms with coefficients∞ or (0,… , 0)
1

.

The following theorem gives sufficient condition for singularity of type 1
r
(1, a2,… , an)

to have crepant resolution.
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Theorem 2.1.30. For a cyclic quotient singularity of type 1
r
(1, a2,… , an), the Fujiki-Oka res-

olution is crepant if the ages of all the coefficients of the corresponding remainder polynomial

R∗

(

(1, a2,… , an)
r

)

are equal to 1.

Moreover ifR∗

(

(1, a2,… , an)
r

)

has iterated term (i.e. xixi… xi) with coefficient at least

2, then singularity 1
r
(1, a2,… , an), has no a crepant resolution.

Example 2.1.31.

R∗

(

(1, 2, 3)
6

)

=
(1, 2, 3)
6

+
(1, 0, 1)
2

x2+
(1, 2, 0)
3

x3+
(1, 0, 0)
1

x2x3+
(1, 1, 0)
2

x3x2+
(1, 0, 0)
2

x3x2x2,

and

age
(

(1, 2, 3)
6

)

= age
(

(1, 0, 1)
2

)

= age
(

(1, 2, 0)
3

)

=

= age
(

(1, 0, 0)
1

)

= age
(

(1, 1, 0)
2

)

= age
(

(1, 0, 0)
2

)

= 1.

Remark 2.1.32. The above condition is not necessary: singularity 1
24
(1, 5, 6, 12) does not

satisfy 2.1.30 (coefficient in x2x4 is equal to 1
2
(1, 1, 1, 1)) but can be resolved in crepant way

(see example 3.12 of [SS20].
In [Sat10] K. Sato found some infinite series of non-cyclic finite subgroups ofG ⊆ SL4(ℂ)

such that ℂ4/

G has a toric projective crepant resolution of singularities.

Theorem 2.1.33 ([Sat10]). Let p be a prime number and let G ⊂ SL4(ℂ) be one of the

following group:

1.
⟨

1
p
(1, 0, a, p − a − 1), 1

p
(0, 1, b, p − b − 1)

⟩

≃ ℤ2
p,

2.
⟨

1
p
(1, a, 0, p − a − 1), 1

p
(0, 0, 1, p − 1)

⟩

≃ ℤ2
p, where a ≠ 0,

3.
⟨

1
p
(0, 1, 0, p − 1), 1

p
(0, 0, 1, p − 1)

⟩

≃ ℤ2
p,

4.
⟨

1
p
(1, 0, 0, p − 1), 1

p
(0, 1, b, p − 1), 1

p
(0, 0, 1, p − 1)

⟩

≃ ℤ3
p.

Thenℂ
4/

G admits crepant resolution in the case 4, 3 and 2 where a ∈
{

1, p−1
2
, p − 2, p − 1

}

and 1 where a = b = 1.
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See also [SS20] for connections between crepant resolution of singularities ofℂn/

G when
G can be decomposed to the cyclic components and Fujiki-Oka resolutions.

When the finite subgroup G ⊆ SLn(ℂ) is non-abelian, we cannot use toric geometry in
order to find crepant resolution. However, if one can divide the group G into abelian sub-
groups, then we may obtain a crepant resolution as a combination of toric crepant resolutions
of singularities.

Theorem 2.1.34 ([HIS17]). Let G ⊂ SL4(ℂ) be one of the following group:

•
⟨

1
n
(1, 0, 0,−1), 1

n
(0, 1, 0,−1), 1

n
(0, 0, 1,−1)

⟩

, where n ≥ 2,

•
⟨

1
2n
(1, n − 1, 1, n − 1), 1

2
(0, 1, 0, 1)

⟩

, where n ≥ 1,

•
⟨

1
4n
(1, 2n − 1, 1, 2n − 1)

⟩

, where n ≥ 2,

•
⟨

1
m
(1,−1, 0, 0), 1

n
(0, 0, 1,−1)

⟩

, where m ≥ 3, n ≥ 2.

Let K ⊂ SL4(ℂ) be a group generated by

⎛

⎜

⎜

⎜

⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟

⎟

⎟

⎠

∈ SL4(ℂ).

Consider a non-abelian finite subgroup G = ⟨H,K⟩ of SL4(ℂ), then ℂ4/

G has a crepant

resolution of singularities.

We and this section with a conjecture proposed by Reid ([Rei92]):

Conjucture 2.1.35 ([Rei92]). Let G be a finite subgroup of SLn(ℂ) and let X: be a crepant
resolution ofX ∶= ℂn/

G. Then there exists basis ofH∗(X
:
,ℚ) consisting of algebraic cycles

in 1− 1 correspondence with conjugacy classes of G, such that conjugacy classes with age k
correspond to basis elements ofH2k(X

:
,ℚ).

In particular b2k(X:) (2k-th Betti number) is the number of conjugacy classes G with age
k, and b2k+1(X:) = 0, so

e(X
:
) = #Conj(G) − the number of conjugacy classes of G.
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§ 2.2 Chen-Ruan cohomology

In [CR04] W. Chen and Y. Ruan introduced new cohomology theory for orbifold. Let X be
a projective variety and G be a finite group which acts on X.

Definition 2.2.1. For a variety X/

G define the Chen-Ruan cohomology by

(2.2.1) H i,j
orb

(

X/

G
)

∶=
⨁

[g]∈Conj(G)

(

⨁

U∈Λ(g)
H i−age(g), j−age(g)(U )

)C(g)
,

where Conj(G) is the set of conjugacy classes of G (we choose a representative g of each
conjugacy class), C(g) is the centralizer of g, Λ(g) denotes the set of irreducible connected
components of the set fixed by g ∈ G and age(g) is the age of the matrix of linearised action
of g near a point of U.

The dimension ofH i,j
orb

(

X/

G
)

will be denoted by ℎi,jorb
(

X/

G
)

.

Remark 2.2.2. The definition makes sense since age is locally constant along each component
of Fix(g). The components of Fix(g) are not necessarily invariant under the action of C(g), so
in 2.2.1 we need to consider the action of C(g) on the inner direct sum (not on each summand
separately).

If the group G is cyclic of a prime order p i.e G = ⟨�⟩, then formula 2.2.1 simplifies to

H i,j
orb

(

X/

G
)

= H i,j(X)G ⊕
⨁

U∈Λ(�)

p−1
⨁

k=1
H i−age(�k), j−age(�k)(U ).

An important feature of Chen-Ruan cohomology is the possibility of computing Hodge
numbers of a crepant resolution of singularities of a quotient variety, without referring to an
explicit construction of such a resolution.

Theorem 2.2.3 ([Yas04]). Let G be a finite group acting on an algebraic smooth variety X.

If there exists a crepant resolution X
/

G
:

of variety X
/

G, then the following equality holds

ℎi,j
(

X/

G
:)

= ℎi,jorb
(

X/

G
)

.

For a systematic exposition of the orbifold Chen-Ruan cohomology see [ALR07].
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§ 2.3 Hodge numbers of the finite quotient

Let Xi be a variety of Calabi-Yau type of dimension ni with purely non-symplectic automor-
phism �i,d ∶ Xi → Xi of order d i.e. for any !Xi

∈ Hni,0(Xi,Xi
) and the fixed d-th root of

unity �d:
�i,d!Xi

= �d!Xi
,

for i = 1, 2,… , n. Consider the following group
Gd,n ∶= {m ∶= (m1, m2,… , mn) ∈ ℤn

d ∶ m1 + m2 +…+ mn = 0} ≃ ℤn−1
d

which acts symplecticly on X1 ×X2 ×… ×Xn by �mii,d on the i-th factor. Suppose that there
exists a crepant resolution d,n

: of the quotient variety
d,n ∶= X1 ×X2 ×… ×Xn

/

ℤn−1
d
,

then d,n is of Calabi-Yau type. The aim of this section is to give a formula for the Hodge
number of d,n using Chen-Ruan cohomology. We shall use the following obvious lemma:
Lemma 2.3.1. Let V1, V2,… , Vn be vector spaces over field of k containing �d . Assume that

�i ∈ End(Vi) for i = 1, 2,… n is an automorphism of order d. Then the fixed locus of Gd,n

acting on V1 × V2 ×… × Vn by

�g ∶ Gd,n ∋ g ↦ �g11 ×… × �gnn ∈ End(V1 × V2 ×… × Vn)

equals
d−1
⨁

m=0

(

V1
)

�md
⊗…⊗

(

Vn
)

�md
,

where
(

Vi
)

�md
denotes m-th eigenspace of ℤd action on Vi, for i ∈ {1, 2,… , n} and m ∈

{0, 1,… , d − 1}.

Proof. Since the action of Gd,n is diagonalizable we can consider only the tensor product of
eigenvectors v1 ⊗… ⊗ vn where �i(vi) = �mid vi. If mi ≠ mj for some 1 ≤ i < j ≤ n then
consider an element

gij =
(

0,… , 1
⏟⏟⏟
i−th place

,… d − 1
⏟⏟⏟
j−th place

,…1
)

.

Since we have
�gij (v1 ⊗…⊗ vn) = �

mi+(d−1)mj
d v1 ⊗…⊗ vn

the vector v1⊗…⊗vn is fixed by �gij iff d ∣ mi+(d−1)mj which is equivalent tomi = mj .
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Observe first that for i ∈ {1, 2,… , n}, 0 ≤ mi ≤ d − 1, the automorphism �mii,d has local
diagonalization near a point of Fix

(

�mii,d
)

of the following form
(

��1mid ,… , �
�nimi
d

)

,

where ��1d ⋅… ⋅ �
�ni
d = �d . Consequently

age
(

�mii,d
)

=
mi
d
+ �i,

where �i is a non-negative integer, moreover �i is constant along every component of Fix(�i).
Definition 2.3.2. Define

Xi,mi,�i =
{

x ∈ Fix
(

�mii,d
)

∶ age
(

�mii,d
)

=
mi
d
+ �i near x

}

and

FXi,mi,j(X, Y ) =
∑

�i≥0

∑

0≤p,q≤dimXi

dimℂ

(

Hp,q (Xi,mi,�i

)

� jd

)

Xp+�iY q+�i .

Theorem 2.3.3. Under the above assumptions

(2.3.1) ℎp,q
(

d,n
:)

=
d−1
∑

j=0

n
∏

i=1

(

d−1
∑

m=0

d
√

(XY )m ⋅ FXi,m,j(X, Y )

)

[XpY q],

where [XpY q] denotes the coefficients of polynomial  in XpY q.

Proof. By the Yasuda Theorem 2.2.3
Hp,q

(

d,n
:)

= Hp,q
orb

(

d,n
)

.

Now by the Künneth formula for Hodge groups it follows that

Hp,q
(

d,n
:)

=
∑

m∈Gn,d

(

∑

�∈ℕn

∑

p,q∈ℕn

|p|=p− 1
d |p|−|�|

|q|=q− 1
d |q|−|�|

Hp1,q1
(

X1,m1,�1

)

⊗…⊗Hpn,qn
(

Xn,mn,�n

)

)Gn,d

,

where � = (�1, �2,… , �n), p = (p1, p2,… , pn), q = (q1, q2,… , qn) and |�| = �1+�2+…+�n,
|p| = p1 + p2 +…+ pn, |q| = q1 + q2 +…+ qn.

Since �d,n
(

Xi,mi,�i

)

= Xi,mi,�i , the group Gn,d acts separately on each summand of the
inner sum, hence by the lemma 2.3.1 we get

Hp,q
(

d,n
:)

=
∑

m∈Gn,d

∑

�∈ℕn

∑

p,q∈ℕn

|p|=p− 1
d |p|−|�|

|q|=q− 1
d |q|−|�|

d
∑

j=0
Hp1,q1(X1,m1,�1)� jd ⊗…⊗Hpn,qn(Xn,mn,�n)� jd .
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Taking dimensions and forming the generating function we get

∑

0≤p,q≤dimd,n
:

ℎp,qorb
(

d,n
:)

XpY q =
∑

0≤p,q≤dimd,n
:

∑

m∈Gn,d

∑

�∈ℕn

d
∑

j=0

∑

p,q∈ℕn
|p|=p
|q|=q

ℎp1−�1,q1−�1
(

X1,m1,�1

)

� jd
⋅… ⋅

⋅ ℎpn−�n,qn−�n
(

Xn,mn,�n

)

� jd
XpY q ⋅ (XY )

m1+…+mn
d =

=
∑

m∈Gn,d

∑

�∈ℕn

d
∑

j=0

(

∑

p1,q1≥0
ℎp1−�1,q1−�1

(

X1,m1,�1

)

� jd
Xp1Y q1 ⋅ (XY )

m1
d

)

×…×

×

(

∑

pn,qn≥0
ℎpn−�n,qn−�n

(

Xn,mn,�n

)

� jd
XpnY qn ⋅ (XY )

mn
d

)

=

=
∑

m∈Gn,d

∑

�∈ℕn

d−1
∑

j=0

(

∑

p1,q1≥0
ℎp1,q1

(

X1,m1,�1

)

� jd
Xp1Y q1

)

(XY )�1+
m1
d ⋅… ⋅

⋅

(

∑

pn,qn≥0
ℎpn,qn

(

Xn,mn,�n

)

� jd
XpnY qn

)

(XY )�n+
mn
d .

Enlarging the exterior sum ∑

m∈Gn,d

(…) to ∑

m∈ℤnd

(…) we introduce only terms with fractional

powers of X and Y , hence ℎp,q
(

d,n
:)

is the coefficient in XpY q of the following Puiseux
polynomial:

∑

m∈ℤnd

∑

���∈ℕn

d−1
∑

j=0

(

∑

p1,q1≥0
ℎp1,q1

(

X1,m1,�1

)

� jd
Xp1Y q1

)

(XY )�1+
m1
d ⋅… ⋅

⋅

(

∑

pn,qn≥0
ℎpn,qn

(

Xn,mn,�n

)

� jd
XpnY qn

)

(XY )�n+
mn
d =

=
d−1
∑

j=0

n
∏

i=1

d−1
∑

m=0

d
√

(XY )m ⋅ FXi,mi,j(X, Y ).

Therefore, in order to compute Poincaré polynomial of d,n
: for any i ∈ {1, 2,… , n} it is

enough to produce the following tables
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k
j 0 1 ⋯ j ⋯ d − 1

0 FXi,0,0 FXi,0,1 FXi,0,j FXi,0,d−1

1 FXi,1,0 FXi,1,1 FXi,1,j FXi,1,d−1

2 FXi,2,0 FXi,2,1 ⋯ FXi,2,j ⋯ FXi,2,d−1

⋮ ⋮ ⋮ ⋮ ⋮

d − 1 FXi,d−1,0 FXi,d−1,1 FXi,d−1,j FXi,d−1,d−1

:=

vXi,j

Table 2.1: FXi,j,k

for any considered variety Xi. Then we compute scalar product of vectors vXi,j and

vd ∶=
(

1, d
√

(XY ), d
√

(XY )2,… , d
√

(XY )d−1
)

for 1 ≤ j ≤ n. Finally we multiply all values of vXi,j◦vd for j ∈ {1, 2,… , n} and add all
products for i ∈ {1, 2,… , n}.

§ 2.4 Stringy Euler Characteristic

One of the most important cohomological invariant of the finite quotient of compact mani-
folds conjectured by “physicists” is physicists (stringy) Euler characteristic.

Let G be a finite group acting on a compact, smooth differentiable manifold X. For any
g ∈ G let

Xg ∶= {x ∈ X ∶ g(x) = x} .

In [Dix+85; Dix+86] L. Dixon, J. Harvey, C. Vafa and E. Witten proposed the following
orbifold Euler number:

(2.4.1) eorb
(

X/

G
)

∶= 1
#G

∑

(g,ℎ)∈G×G
gℎ=ℎg

e(Xg ∩Xℎ).

According to [HH90] the formula 2.4.1 can be rewritten as

(2.4.2) eorb
(

X/

G
)

∶=
∑

[g]∈Conj(G)
e
(

Xg/

C(g)
)

,

where Conj(G) is the set of conjugacy classes of G (we choose a representative g of each
conjugacy class) and C(g) is the centralizer of g.
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It is expected that orbifold Euler characteristic eorb
(

X/

G
)

coincides with the topological
Euler characteristic e

(

X/

G
:)

of any crepant resolution of X/

G. In fact:

Theorem 2.4.1 ([Roa89] (abelian case), [Bat99]). Let G ⊂ SLn(ℂ) be a finite group acting

on smooth algebraic variety X. If there exists a crepant resolution X
/

G
:

of variety X∕G,

then the following equality holds

e
(

X/

G
:)

= eorb
(

X/

G
)

.

Some explicit examples of a group G and possible calculations were studied by T. Höfer
and F. Hirzebruch in [HH90].

We shall use orbifold Euler characteristic in order to find relations between parameters
attached to K3 surfaces in Chapter 5.

§ 2.5 Topological and holomorphic Lefchetz’s numbers

In the following section we review basic information about topological and holomorphic
Lefschetz numbers. We refer to [GH94] and [Pet86].

Let X be a compact oriented manifold and f ∶ X → X any continuous map. The in-
tersection number of the graph Γf of f and diagonal ΔX in X × X is equal to the so called
topological Lefschetz number given by the following formula:

top(f ) ∶=
∑

q≥0
(−1)q tr (f ∗∶ Hq(X)→ Hq(X)) .

Assuming X is a complex manifold and f a holomorphic map then intersection Γf ⋅ ΔX
may be computed in the case when connected componentsC of the Fix(f ) are non-degenerate
i.e. C is a manifold and for any P ∈ C the linear map (id − dfP ) is invertible.

Theorem 2.5.1 ([Uen76]). Let X be a compact complex manifold and f ∶ X → X a holo-

morphic map with non-degenerate fixed locus then

(2.5.1) top(f ) =
∑

C∈Fix(f )
e(C),

where the sum is taken over connected components of Fix(f ).

32



Formula 2.5.1 holds in particular when f n = id for some n ≥ 1 (see [Car57]).
The map f acts not only on the de Rham cohomology of X but on the Dolbeault coho-

mology too. Therefore there is a hope that the action of f on H∗,∗(X) will be reflected in
local properties of f around the fixed point locus.
Definition 2.5.2. Let X be a compact complex manifold and f ∶ X → X a holomorphic
map. The number

hol(f ) ∶=
∑

q≥0
(−1)q tr

(

f ∗|H0,q(X)
)

is called holomorphic Lefschetz number.
According to [AS68b] and [AS68a] the holomorphic Lefschetz number can be computed

in different way. For our purpose assume that X has dimension 2 and let G be a finite group
of automorphisms of X.
Theorem 2.5.3 ([AS68b], [AS68a]). For any g ∈ G the following formula holds

hol(g) =
∑

j∈J
a(Pj) +

∑

k∈K
b(Ck),

where sets {Pj}j∈J and {Ck}k∈K denote fixed points and fixed curves in Fix(g) and

a(P ) ∶= 1
det(1 − g|g)

, where P is a tangent space at P ,

b(C) ∶=
1 − g(C)
1 − �

−
�C2

(1 − � )2
, where � is an eigenvalue of g on the normal bundle of Fix(g).

§ 2.6 Zeta function of an algebraic variety

Definition 2.6.1. Let q = pk be a prime power and X∕Fq a variety defined over Fq. Then the
zeta function of X∕Fq is defined by

Zq(t) ∶= exp

(

∞
∑

r=1
Nqr ⋅

tr

r

)

∈ ℚ[[t]],

whereNqr is the number of Fq-rational points of X.
Let X be a d-dimensional Calabi-Yau manifold defined over ℚ. For a given prime power

q, denote by Frobq the Frobenius morphism i.e.

Frobq(x1, x2,… , xn) =
(

xq1, x
q
2,… , xqn

) for any (x1, x2,… , xn) ∈ Xq.
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In general it is a very deep problem to compute the zeta function of a given variety. A.
Weil in [Wei49] formulated a series of remarkable conjectures concerning zeta functions;
they are called the Weil Conjectures although since 1974 they are theorems.

Theorem 2.6.2 (Weil Conjectures). Let X be a smooth d-dimensional projective variety de-

fined over the field Fq, where q = pk is a prime power. Then the function Zq(t) satisfies the

following properties:

Rationality: The zeta function is rational i.e.

Zq(t) =
Pq(t)
Qq(t)

for some polynomials Pq, Qq ∈ ℚ[t].

Functional equation: The function Zq(t) satisfies a functional equation:

Zq

(

1
qdt

)

= ±q
de
2 teZq(t),

where e is the Euler characteristic of the variety X over ℂ.

Analogon of the Riemann hypothesis:

Zq(t) =
P1,q(t) ⋅ P3,q(t) ⋅… ⋅ P2d−1,q(t)
P0,q(t) ⋅ P2,q(t) ⋅… ⋅ P2d,q(t)

,

where P0,q(t) = 1 − t, P2d,q(t) = 1 − qdt and

Pi,q(t) =
bi
∏

j=1
(1 − �i,jt)

for 1 ≤ i ≤ 2d−1, where the �i,j are algebraic integers of complex absolute value |�i,j| = q1∕2.

The Lefschetz fixed point formula applied to Frobenius morphism yields

Nq =
2d
∑

i=0
(−1)i tr

(

Frob∗q ∣ H
i
ét(X,ℚl)

)

.

We define polynomials

(2.6.1) Pi,q(t) ∶= det
(

1 − Frob∗q t ∣ H
i
ét(X,ℚl)

)

.

From here one can easily deduce that

Zq(t) =
P1,q(t) ⋅ P3,q(t) ⋅… ⋅ P2d−1,q(t)
P0,q(t) ⋅ P2,q(t) ⋅… ⋅ P2d,q(t)

,
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in particular polynomials from 2.6.1 coincide with polynomials defined in Riemann hypoth-
esis (iii) in 2.6.2.

Now we define i-th L series of X by the following rule:
Li

(

H i
ét

(

X,ℚl

)

, s
)

∶= (∗)
∏

p∈

1
Pi,q(q−s)

,

where  is the set of primes of good reduction and (∗) denotes suitable Euler factors for the
primes of bad reduction. Usually, the d-th L series L

(

Hd
ét(X,ℚl), s

)

we denote by L(X, s).
Definition 2.6.3. The Hasse-Weil zeta function of X is defined by

�(X, s) =
∏d

i=0L2i−1(X, s)
∏d

i=1L2i(X, s)
.

We denote by
�(ℚ, s) ∶=

∞
∑

n=1

1
ns

the Riemann zeta function.

2.6.1 Examples
Elliptic curve

Let q = pn be any prime power. The zeta function of elliptic curveE over Fq has the following
form:

Zq(E∕Fq)(T ) =
1 − aqT + qT 2

(1 − T )(1 − qT )
,

where
aq = q + 1 − #E(Fq) and |aq| ≤ 2

√

q.

By the famous result of A. Wiles ([Wil95]) there is a cusp form

f (�) =
∞
∑

k=1
bk�

k,

where � ∶= e2�iz of weight 2 and levelN such that
L(E, s) = L(f, s).

Consequently ap ∶= bp for all p of good reduction for E.
Moreover the Hasse-Weil zeta function of X is given by

�(E, s) =
L1(E, s)

�(ℚ, s)�(ℚ, s − 1)
.
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K3 surface

The zeta function of K3 surface S over Fq has the following form:

Zq(S∕Fq)(T ) =
1

(1 − T )P22(T )(1 − q2T )
,

where P22(T ) is a polynomial of degree 22.
Taking decomposition of lattices

H2(S,ℤ) = NS(S)⊕ T (S),

whereNS(S) is a Neron-Severi lattice (torsion free lattice of rank �(S) ≤ 20) and T (S) is a
transcendental part ofH2(S,ℤ) (for a detailed exposition ofK3 surface theory see [Huy16]),
induces factorisation of the L-series of S i.e.

L(S, s) = L(NS(S)⊗ℚl, s) ⋅ L(T (S)⊗ℚl, s)

and therefore
�(S, s) = 1

�(ℚ, s)L(S, s)�(ℚ, s − 2)
.

Y. Goto, R. Livné, N. Yui in [GLY13] described 86 out of 95 families (from Reid’s list
[Rei80]) of K3 surfaces S over ℚ of CM type and proved the following theorem

Theorem 2.6.4 ([GLY13]). For all 86 pairs (S, �) ofK3 surfaces with involution, there exists
quadruple (�,K, �, �) with the following properties:

• � is an (Artin) Galois representation of Gal(ℚ∕ℚ), and the degree of � is equal to

Picard number of S,

• K is a CM abelian extension of ℚ,

• �∶ K → ℂ is an embedding,

• � is a Hecke character of K of∞ type z→ �(z)2,

such that

�(S, s) = 1
�(ℚ, s)�(ℚ, s − 2)L(�, s − 1)L(�, s)

.

We refer to [HKS06], [Mey05] for more complete exposition ofmodularity of Calabi-Yau
manifolds.

36



§ 2.7 Zeta functions of a finite quotient

To compute the zeta function of Xn,d we describe a much more general approach. Firstly let
us recall some basic notation from linear algebra.

Let V , W be finite dimensional vector spaces over a field K and take L ∈ End(V ),
M ∈ End(W ).We define their characteristic polynomials:

f (t) ∶= det(1 − t ⋅ L) and g(t) ∶= det(1 − t ⋅M).

Over an algebraic closure K of K we have factorisations

f (t) = (1 − �1t)(1 − �2t)… (1 − �dimV t)

and
g(t) = (1 − �1t)(1 − �2t)… (1 − �dimW t),

for some �1, �2,… , �dimV , �1, �2,… , �dimW ∈ K which are in fact eigenvalues of endomor-
phisms LK andMK respectively.

Denoting by f ⊗ g the characteristic polynomial of L⊗M :

f ⊗ g(t) = det(1 − t ⋅ L⊗M),

can be written as:
f ⊗ g(t) ∶=

dimV
∏

i=1

dimW
∏

j=1
(1 − �i�jt).

One can see that
f ⊗ g(t) =

dimV
∏

i=1
g(�it) =

dimW
∏

j=1
f (�jt).

Moreover one can check that the this polynomial can be computed using resultant i.e.

f ⊗ g(t) = ress
(

f (s), sdeg(g) ⋅ g
( t
s

))

.

The tensor product of polynomials extends uniquely to the case of rational functions f =
a
b
, g = c

d
, where a, b, c, d ∈ K[t] by taking:

a
b
⊗ c
d
=
(a ⊗ c) ⋅ (b ⊗ d)
(a ⊗ d) ⋅ (b ⊗ c)

.
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Rosen in [Ros07] introduced the orbifold Frobenius morphisms on the Chen-Ruan orb-
ifold cohomology and use it define orbifold zeta function

(2.7.1) ZCR( , t) ∶= det
(

1 − Froborb t ∣ H∗
CR

(

 ×Fq Fq,ℚl

))

,

where H∗
CR( ,ℚl) is l-adic Chen Ruan cohomology and Froborb is the orbifold Frobenius

morphism defined in Section 3 and 5, respectively of [Ros07]. It was also proven (Corollary
6.4) that for a crepant resolution X: → X of the course moduli scheme X of  the orbifold
cohomological zeta function of  coincide with classical zeta function of X: i.e.

ZH∗
CR
( , t) = Zq(X

:
, t).

LetXi be a variety of Calabi-Yau type with automorphism �i,d ∶ Xi → Xi of order d such
that �∗i,d(!Xi

) = �d!Xi
for i = 1, 2,… , n. Consider the following group

Gd,n ∶= {m ∶= (m1, m2,… , mn) ∈ ℤn
d ∶ m1 + m2 +…+ mn = 0} ≃ ℤn−1

d

which acts onX1×X2×…×Xn by �mii,d on the i-th factor. Suppose that there exists a crepant
resolution d,n

: of the quotient variety

d,n ∶= X1 ×X2 ×… ×Xn
/

ℤn−1
d
.

Theorem 2.7.1. The Zeta functionZq

(

d,n
:)

(T ) equals the product of factors of the rational

function in T

(2.7.2)
(

d−1
∏

j=0

n
⨂

i=1

(

d−1
∏

m=0
ZXi,m,j

(

q
m
d T

)

))(−1)n+1

which contain only integral powers of q, where

ZXi,m,j(T ) =
∏

�i≥0

∏

0≤ki≤2 dimXi

det
(

1 − Frob∗q T ∣ H
ki
(

Xi,m,�i

)

� jd

)(−1)ki+1

(q�iT ).

Proof. Similarly as in the proof of 2.3.3 merging formulas 2.7.1 and 2.2.1 we have the fol-
lowing formula for zeta function of d,n

: :

Zq

(

d,n
:)

(T ) =
∏

m∈Gd,n

∏

�≥0

∏

|k|=k−2 |m|

d −�

d−1
∏

j=0

n
⨂

i=1
det

(

1 − Frobq T ∣ Hki
(

Xi,mi,�i

))(−1)ki+1 =

=
∏

m∈Gd,n

∏

�≥0

∏

|k|=k

d−1
∏

j=0

n
⨂

i=1
det

(

1 − Frobq T ∣ Hki
(

Xi,mi,�i

))(−1)ki+1
(

q
mi
d +�iT

)

=

38



=
∏

m∈Gd,n

∏

�≥0

∏

|k|=k

d−1
∏

j=0

(

n
⨂

i=1
det

(

1 − Frobq T ∣ Hki
(

Xi,mi,�i

))

)(−1)|k|+n
(

q
mi
d +�iT

)

,

where � = (�1, �2,… , �n), k = (k1, k2,… , kn), m = (m1, m2,… , mn) and |�| = �1 + �2 +

…+ �n, |k| = k1 + k2 +…+ kn, |m| = m1 + m2 +…+ mn.

Extending the exterior product ∏

m∈Gn,d

(…) to ∏

m∈ℤnd

(…)we introduce only factors containing
fractional powers of q, denote the resulting rational function by

W (T ) =
∏

m∈ℤnd

∏

���≥0

∏

|k|=k

d−1
∏

j=0

(

n
⨂

i=1
det

(

1 − Frobq T ∣ Hki
(

Xi,mi,�i

))

)(−1)|k|+n
(

q
mi
d +�iT

)

=

=

(

d−1
∏

j=0

n
⨂

i=1

(

d−1
∏

m=0
ZXi,m,j

(

q
m
d T

)

))(−1)n+1

.

Let W = W �1
1 ⋅W �2

2 ⋅… ⋅W �s
s be the decomposition of W into product of irreducible

polynomialsWi ∈ ℤ[q
1
d , T ], �i ∈ ℤ. Then

Zq

(

d,n
:)

(T ) =
∏

{

W �1
i ∶ Wi ∈ ℤ[q, T ], i = 1,… , s

}

.

Therefore, in order to compute zeta function of d,n
: for any i ∈ {1, 2,… , n} it is enough

to produce the following tables

k
j 0 1 ⋯ j ⋯ d − 1

0 ZXi,0,0 ZXi,0,1 ZXi,0,j ZXi,0,d−1

1 ZXi,1,0 ZXi,1,1 ZXi,1,j ZXi,1,d−1

2 ZXi,2,0 ZXi,2,1 ⋯ ZXi,2,j ⋯ ZXi,2,d−1

⋮ ⋮ ⋮ ⋮ ⋮

d − 1 ZXi,d−1,0 ZXi,d−1,1 ZXi,d−1,j ZXi,d−1,d−1

:=

vXi,j

Table 2.2: ZXi,j,k

for any considered variety Xi. Then we we evaluate vector vXi,j on
vd ∶=

(

T , d
√

qT , d
√

q2T ,… , d
√

qd−1T
)
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and multiply all its terms. Then we take tensor product for all i ∈ {1, 2,… , n} and take
product over j ∈ {0, 1,… , d − 1}. Finally we take (−1)n+1 power of the result and form
product of factors containing only integral powers of q.

§ 2.8 Rational elliptic surfaces

In this section we collect basic information about rational elliptic surfaces. We refer to
[Mir89], [IS96], [SS10], [SS19] for a complete exposition in this topic.

Definition 2.8.1. An elliptic surface is a smooth surface S with a proper morphism f ∶ S →

B onto a smooth curve B such that generic fiber has genus one.

An elliptic surface f ∶ S → B is relatively minimal if there are no (−1)-curves contained
in fibers of f. By blowing down (−1)-curves in fibers of S we obtain relatively minimal
surface birational to S.

If S is an elliptic surface then K2
S = 0 and consequently S is rational (i.e. birational to

ℙ2) iff B ≃ ℙ1 and e(S) = 12 (equivalently the sum of Euler characteristic of fibers equals
12).

Every rational elliptic surface has a singular fiber. The complete list of possible types of
singular fibers was given by Kodaira in [Kod63]:

• irreducible I1 and II,

• reducible infinite series In (n > 0), I∗n (n ≥ 0),

• reducible five types III, IV, II∗, III∗ and IV∗.

• multiple fibers.

We shall consider only elliptic surfaces with a fixed section, as the intersection of a section
with any fiber equals one, an elliptic surfaces with a section has no multiple fibers.

Fibers In are called semistable.
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I1 In

I∗0 I∗1 I∗n

II III IV

II∗ III∗ IV∗

Figure 2.1: Kodaira classification of possible singular fibers
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S. Herfurtner in [Her91] gave a complete list of rational elliptic surfaces with four singular
fibers and non-constant J -invariant. It was obtained by analysing the possible combinations
of singular fibers and then listing all Weierstrass models of such elliptic fibrations.

In [MP86] similar classification was given for extremal rational elliptic surfaces i.e. ra-
tional elliptic surface with finite Mordell-Weil group and Picard number equal to ℎ1,1. Six
of them (in fact all possible with semistable fibers) (I9, I1, I1, I1), (I8, I2, I1, I1), (I6, I3, I2, I1),
(I5, I5, I1, I1), (I4, I4, I2, I2), (I3, I3, I3, I3) were studied by Beauville in [Bea82] – these sur-
faces are called Beauville surfaces.
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Chapter 3

Cynk-Hulek varieties

In this chapter we briefly recall the original Cynk-Hulek construction of an arbitrary dimen-
sional Calabi-Yau manifolds involving elliptic curves with automorphism of order 2, 3 and
4. Then, we shall prove that this construction can be also carried out for elliptic curves with
automorphism of order 6. In the proof we shall use toric methods introduced in chapter 2.

In the last section we shall compute Hodge numbers and the Zeta function of all consid-
ered Calabi-Yau manifolds.

§ 3.1 Construction

Let Ed be an elliptic curve with an order d automorphism �d ∶ Ed → Ed , then d = 2, 3, 4, 6
(see [Sil09]). Up to an isomorphism the curve Ed and the automorphism �d can be given as:

• E2 is an arbitrary elliptic curve, and the involution �2 is the [−1] map

�2(x, y) = (x,−y),

• E3 has the Weierstrass equation y2 = x3 + 1, and the automorphism �3 is given by

�3(x, y) = (�3x, y),

where �3 denotes a fixed 3-rd root of unity,

• E4 has the Weierstrass equation y2 = x3 + x, and the automorphism �4 is given by

�4(x, y) = (−x, iy),
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• E6 has the Weierstrass equation y2 = x3 + 1, and the automorphism �6 is given by
�6(x, y) = (�26x,−y),

where �6 denotes a fixed 6-th root of unity satisfying �26 = �3.
For d ∈ {2, 3, 4, 6} and any positive integer n, the following group

Gd,n ∶= {(m1, m2,… , mn) ∈ ℤn
d ∶ m1 + m2 +…+ mn = 0} ≃ ℤn−1

d

acts on En
d by �mid on the i-th factor.

Note that Gd,n preserves the canonical bundle !End of the manifold En
d . Therefore it is

natural to ask whether variety En
d
/

Gd,n
admits crepant resolution.

Theorem 3.1.1 ([CH07]). If d = 2, 3, 4, then there exists a crepant resolution

En
d
/

Gd,n

:
→ En

d
/

Gd,n
.

Consequently, Xd,n ∶=
En
d
/

Gd,n

:
is an n-dimensional Calabi-Yau manifold.

The above construction for n = 3 and d = 2 i.e. E3
2
/

ℤ2
2
was first considered by C. Borcea

in [Bor97]. He also proved that E3
2
/

ℤ2
2

:
has CM iff E2 has CM. Moreover A. Molnar in his

PhD ([Mol15]) focused on modular aspects of quotients of E3
d by different finite groups.

We shall proof 3.1.1 using toric techniques introduced in Chapter 2.

3.1.1 d = 2

Let X1, X2 be two Calabi-Yau manifolds with involutions �i∶ Xi → Xi (for i = 1, 2) such
that

�∗1
(

!X1
)

= −!X1 and �∗2
(

!X2
)

= −!X2 ,

where !Xi
denotes a chosen generator ofHn,0(Xi), for i = 1, 2.

Suppose that the fixed point loci Fix(�1) and Fix(�2) of �1 and �2 respectively, are disjoint
union of smooth divisors, in particular both have linearisation of the form (−1, 1, 1,… , 1)

near any point of Fix(�1) or Fix(�2).
Proposition 3.1.2. Under the above assumptions the quotient varietyX1 ×X2

/

ℤ2
has a res-

olution of singularitiesX1 ×X2
/

ℤ2

:
, which is a Calabi-Yaumanifold. Moreover, themanifold

X1 ×X2
/

ℤ2

:
, admits a ℤ2-action which satisfies the same assumptions as for X2.
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Proof. The automorphism � ∶= �1 × �2 has a local linearisation around fixed point of one of
the following types: 1

2
(1, 1).

In local coordinates, the map from X1 ×X2 to the resolution is given in affine charts by
(

x2,
y
x

)

,
(

x
y
, y2

)

,

hence id ×�2 lifts to resolution as (1,−1) and (−1, 1), respectively. Consequently the action
on X1 ×X2

/

�
:

induced by id ×�2 satisfies the assumptions we made on the action �2, hence
the statement follows.

Figure 3.1: Decomposition of 1
2
(1, 1)

The case where X1 is a K3 surface and X2 elliptic curve, both of them admitting non-
symplectic involution was studied independently by Borcea ([Bor97]) and Voisin ([Voi93]).

3.1.2 d = 3

Let X1, X2 be two Calabi-Yau manifolds with automorphisms �i∶ Xi → Xi (for i = 1, 2) of
order 3 such that

�∗1
(

!X1
)

= �3!X1 and �∗2
(

!X2
)

= �23!X2 ,

where !Xi
denotes a chosen generator ofHn,0(Xi), for i = 1, 2. Suppose that

1. the fixed point locus Fix(�1) of �1 is a disjoint union of smooth divisors, in particular
�1 has linearisation of the form (�3, 1, 1,… , 1) near any point of Fix(�1),

2. Fix(�2) is a disjoint union of submanifolds of codimension at most 2. In particular �2
has linearisation of the form

• (�23 , 1, 1,… , 1) near a component of codimension one of Fix(�2),
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• (�3, �3, 1, 1,… , 1) near a component of codimension two of Fix(�2).
Proposition 3.1.3. Under the above assumptions the quotient varietyX1 ×X2

/

ℤ3
has a res-

olution of singularitiesX1 ×X2
/

ℤ3

:
, which is a Calabi-Yaumanifold. Moreover, themanifold

X1 ×X2
/

ℤ3

:
, admits a ℤ3-action which satisfies the same assumptions as for X2.

Proof. The automorphism � ∶= �1 × �2 has a local linearisation around fixed point of one of
the following types: 1

3
(1, 2) or 1

3
(1, 1, 1). Both singularities can be resolved by subdividing

junior simplexes in dimension 2 and 3 (figure: 3.2).
(i) If � has a local linearisation given by 1

3
(1, 2) near Fix(�), then in local coordinates, the

map from X1 ×X2 to the resolution is given in affine charts by
(

x3,
y
x2
)

,
(

x2

y
,
y2

x

)

,
(

x
y2
, y3

)

.

The action of id ×�2 has a linearisation (1, �23 , 1,… , 1), so it lifts to the resolution as
(1, �23 ), (�3, �3), (�23 , 1), respectively.

(ii) If � has a local linearisation given by 1
3
(1, 1, 1) near Fix(�), then in local coordinates,

the map from X1 ×X2 to the resolution is given in affine charts by
(

x3,
y
x
, z
x

)

,
(

x
y
, y3, z

y

)

,
(x
z
,
y
z
, z3

)

,

consequently id ×�2 lifts to the resolution as: (1, �3, �3), (�23 , 1, 1), (�23 , 1, 1), respectively.
In all considered cases the action onX1 ×X2

/

�
:

induced by id ×�2 satisfies the assump-
tions we made on the action �2, hence the statement follows.

Figure 3.2: Decomposition for 1
3
(1, 2) and 1

3
(1, 1, 1)
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3.1.3 d = 4

Let X1, X2 be two Calabi-Yau manifolds with automorphisms �i∶ Xi → Xi (for i = 1, 2) of
order 4 such that

�∗1
(

!X1
)

= �4!X1 and �∗2
(

!X2
)

= �34!X2 ,

where !Xi
denotes a chosen generator ofHn,0(Xi), for i = 1, 2. Suppose that

1. the fixed point locus Fix(�1) of �1 is a disjoint union of smooth divisors, in particular
�1 has linearisation of the form (�4, 1, 1,… , 1) near any point of Fix(�1),

2. Fix(�2) is a disjoint union of submanifolds of codimension at most 3. In particular �2
has linearisation of the form

• (�34 , 1, 1,… , 1) near a component of codimension one of Fix(�2),
• (�4, �

2
4 , 1, 1,… , 1) near a component of codimension two of Fix(�2),

• (�4, �4, �4, 1, 1,… , 1) near a component of codimension three of Fix(�2).
Proposition 3.1.4. Under the above assumptions the quotient varietyX1 ×X2

/

ℤ4
has a res-

olution of singularitiesX1 ×X2
/

ℤ4

:
, which is a Calabi-Yaumanifold. Moreover, themanifold

X1 ×X2
/

ℤ4

:
, admits a ℤ4-action which satisfies the same assumptions as for X2.

Proof. The automorphism � ∶= �1 × �2 has a local linearisation around fixed point of one of
the following types: 1

4
(1, 3), 1

4
(1, 1, 2) or 1

4
(1, 1, 1, 1). Resulting singularities can be resolved

by subdividing junior simplexes in dimension 2, 3 and 4 (figure 3.3).
(i) If � has a local linearisation given by 1

4
(1, 3) near Fix(�), then in local coordinates, the

map from X1 ×X2 to the resolution is given in affine charts by
(

x4,
y
x3
)

,
(

x3

y
,
y2

x2

)

,
(

x2

y2
,
y3

x

)

,
(

x
y3
, y4

)

.

The action of id ×�2 has a linearisation (1, �34 , 1,… , 1), so it lifts to the resolution as
(1, �34 ), (�4, �

2
4 ), (�24 , �4), (�34 , 1),respectively.

(ii) If � has a local linearisation given by 1
4
(1, 1, 2) near Fix(�), then in local coordinates,

the map from X1 ×X2 to the resolution is given in affine charts by
( z
x2
,
y
x
, x4

)

,
(

z2,
y
x
, x

2

z

)

,
(

z2,
y2

z
, x
y

)

,
(

y4, x
y
, z
y2

)

,
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consequently id ×�2 lifts to the resolution as: (�24 , �4, 1), (1, �4, �24 ), (1, 1, �34 ), (1, �34 , 1),
respectively.

Figure 3.3: Decompositions for 1
4
(1, 3), 1

4
(1, 1, 2) and 1

4
(1, 1, 1, 1)

In all considered cases the action on X1 ×X2
/

�
:

induced by id ×�2 satisfies the assump-
tions we made on the action �2, hence the statement follows.

§ 3.2 d = 6

In [CH07] a crepant resolution of Xn,d for d = 2, 3, 4 was constructed by an iterated ap-
proach. In this section we will give the missing construction for elliptic curves admitting
automorphisms of order 6 and prove that there exists a crepant resolution of these manifolds.

3.2.1 Resolution of singularities

Let X1, X2 be two Calabi-Yau manifolds with automorphisms �i∶ Xi → Xi (for i = 1, 2) of
order 6 such that

�∗1
(

!X1
)

= �6!X1 and �∗2
(

!X2
)

= �56!X2 ,

where !Xi
denotes a chosen generator ofHn,0(Xi), for i = 1, 2.

Assume that:

1. the fixed point locus Fix(�1) of �1 is a disjoint union of smooth divisors, in particular
�1 has linearisation of the form (�6, 1, 1,… , 1) near any point of Fix(�1),

2. Fix(�2) is a disjoint union of submanifolds of codimension at most 3. In particular �2
has linearisation of the form

• (�56 , 1, 1,… , 1) near a component of codimension one of Fix(�2),
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• (�46 , �6, 1, 1,… , 1) or (�36 , �26 , 1, 1,… , 1) near a component of codimension two of
Fix(�2),

3. Fix(�21)⧵Fix(�1) is a disjoint union of smooth divisors in particular �21 has linearisation
(�3, 1, 1,… , 1) along any component of Fix(�21) ⧵ Fix(�1),

4. Fix(�31)⧵Fix(�1) is a disjoint union of smooth divisors in particular �31 has linearisation
(−1, 1, 1,… , 1) along any component of Fix(�31) ⧵ Fix(�1),

5. Fix(�22) ⧵ Fix(�2) is a disjoint union of smooth submanifolds of codimension at most
2, so �22 has linearisation of the form (�23 , 1, 1,… , 1) or (�3, �3, 1, 1,… , 1) along any
component of Fix(�22) ⧵ Fix(�2),

6. Fix(�32) ⧵ Fix(�2) is a disjoint union of smooth divisors, so �32 has linearisation of the
form (−1, 1, 1,… , 1) along any component of Fix(�32) ⧵ Fix(�2),

7. the automorphism �2 has a local linearisation of the form (�26 , �
2
6 , �6, 1, 1,… , 1) along

any codimensional 3 component of Fix(�2).

We have the following:

Proposition 3.2.1 ([Bur20]). Under the above assumptions the quotient X1 ×X2
/

�1 × �2
of the product X1 × X2 by the action of �1 × �2 admits a crepant resolution of singularities
X1 ×X2

/

�1 × �2

:
.Furthermore id ×�2 induces an automorphism of order 6 onX1 ×X2

/

�1 × �2

:

that satisfies all assumption we put on �2.

Proof. By the assumption we made, the automorphism � ∶= �1 × �2 has a local linearisation
around any fixed point of one of the following types:

(i) (�6, �56 , 1, 1,… , 1) which corresponds to singularity of type 1
6
(1, 5),

(ii) (�6, �6, �46 , 1, 1,… , 1) which corresponds to singularity of type 1
6
(1, 1, 4),

(iii) (�6, �26 , �36 , 1, 1,… , 1) which corresponds to singularity of type 1
6
(1, 2, 3),

(iv) (�6, �6, �26 , �26 , 1, 1,… , 1) which corresponds to singularity of type 1
6
(1, 1, 2, 2).

We shall use suitable resolution of the cyclic singularity in each case.
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(i) If � has a local linearisation given by (�6, �56 , 1, 1,… , 1) near Fix(�), then in local coor-
dinates, the map from X1 ×X2 to the resolution is given in affine charts by

(

x6,
y
x5
)

,
(

x5

y
,
y2

x4

)

,
(

x4

y2
,
y3

x3

)

,
(

x3

y3
,
y4

x2

)

,
(

x2

y4
,
y5

x

)

or
(

x
y5
, y6

)

.

The action of id ×�2 has a linearisation (1, �56 , 1,… , 1), so it lifts to the resolution as
(1, �56 ), (�6, �

4
6 ), (�26 , �36 ), (�36 , �26 ), (�46 , �6) and (�56 , 1), respectively.

(ii) If � has a local linearisation given by (�6, �6, �46 , 1, 1,… , 1) near Fix(�), then we can
use a toric resolution of 1

6
(1, 1, 4) singularity described in 2.1.23. Thus the map from

X1 ×X2 to the resolution is given in affine charts as

(

x6, z
x4
,
y
x

)

,
(

x4

z
, z

2

x2
,
y
x

)

,
(

x2

z2
, z3,

y
x

)

,
(

x
y
, z
y4
, y6

)

,
(

x
y
, z

2

y2
,
y4

z

)

or
(

x
y
, z3,

y2

z2

)

.

Therefore the action of id ×�2 lifts to the resolution as (1, �46 , �6), (�26 , �26 , �6), (�46 , 1, �6),
(�56 , 1, 1), (�

5
6 , 1, 1), (�

5
6 , 1, 1).

(iii) If � has a local linearisation given by (�6, �26 , �36 , 1, 1,… , 1) near Fix(�), then we use
again toric resolution of 1

6
(1, 2, 3) singularity. There are five different decompositions

of junior simplex which give a toric resolution i.e:

Figure 3.4 Figure 3.5

50



Figure 3.6 Figure 3.7

Figure 3.8

Figure 3.9: Possible triangulations of the junior simplex of 1
6
(1, 2, 3)

Note that in 3.4 the local affine chart corresponds to marked grey triangle is given by
(

yz2

x2
,
xy
z
, x

2

y

)

,

so the action of id ×�2 lifts to that affine chart as (�26 , �56 , �46 ), which is excluded by the
condition 7.
Similarly, local affine charts corresponding to marked grey triangles in figures 3.5, 3.6,
3.7 are equal to respectively

(

y2z
x
,
xy
z
, xz
y2

)

,
(

xz
y2
,
y4

x2
, x

2

y

)

,
(

xy
z
, z

3

x3
, x

3

z

)

,

with liftings (�6, �56 , �56 ), (�56 , �26 , �46 ), (�56 , �36 , �36 ), respectively – all of them are excluded
by 7.
Only 3.8 is suitable for our considerations. For that chosen triangulation (and hence
resolution), the map from X1 × X2 to the resolution is given in affine charts as (see
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3.10):
(

x6, z
x3
,
y
x2
)

,
(

x3

z
, z2,

y
x2

)

,
(

x2

y
, z2,

y2

xz

)

,
(

xz
y2
, z2,

y3

z2

)

,
(

z2

y3
, y3,

xy
z

)

or
(

z
xy
, y3, x

2

y

)

.

3

2

2 x2/y

x2/y

x3/z

y2/xz

y3/z2

z/xy

x6

z2

z2

z2

y3

y3

Figure 3.10: Crepant resolution of 1
6
(1, 2, 3)

The action of id ×�2 has a local linearisation (1, �26 , �36 , 1,… , 1), hence it lifts to the res-
olution as (1, �36 , �26 ), (�36 , 1, �26 ), (�46 , 1, �6), (�56 , 1, 1), (1, 1, �56 ), (�6, 1, �46 ), respectively.

(iv) If � has a local linearisation given by (�6, �6, �26 , �26 , 1, 1,… , 1) near Fix(�2), then the
map is given by

(

x6,
y
x
, z
x2
, t
x2
)

,
(

x2

z
,
y
x
, z3, t

z

)

,
(

x2

t
,
y
x
, t3, z

t

)

,
(

x
y
, y6, z

y2
, t
y2

)

,
(

x
y
,
y2

z
, z3, t

z

)

or
(

x
y
,
y2

t
, z
t
, t3

)

.

The action of id ×�2 has a local linearisation (1, �6, �26 , �26 , 1, 1,… , 1), hence it lifts to the
resolution as (1, �6, �26 , �26 ), (�46 , �6, 1, 1), (�46 , �6, 1, 1), (�56 , 1, 1, 1), (�56 , 1, 1, 1), (�56 , 1, 1, 1).

In all considered cases the action on X1 ×X2
/

�
:

induced by id ×�2 satisfies the assump-
tions we made on the action �2.

Finally near the points of Fix(�2)⧵Fix(�) and Fix(�3)⧵Fix(�)we first consider the quotient
X1 ×X2

/

�2
(

resp. X1 ×X2
/

�3
)

, then using Prop. 2.1 and 3.1 of [CH07] we construct
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Figure 3.11: Junior symplex of 1
6
(1, 1, 2, 2)

Figure 3.12: Triangulation of 3.11

crepant resolutions of
(

X1 ×X2
/

�2
):
/

�3 resp.
(

X1 ×X2
/

�3
):
/

�2 .
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We can iterate the procedure in Proposition 3.2.1. Consider Calabi-Yau manifolds X1,

X2,… , Xn with automorphisms �i of order 6 such that
• �∗i (!Xi

) = �6!Xi
where !Xi

is a canonical form on Xi,

• �1 satisfies the assumptions we put on �1 in 3.2.1,
• �5i satisfies, for i = 2,… , n, the assumptions we put on �2 in 3.2.1.

The group G6,n acts on X1 ×X2 ×… ×Xn as
(

�m11 (x1), �
m2
2 (x2),… , �mnn (xn)

)

for (m1, m2,… , mn) ∈ G6,n and xi ∈ Xi for i = 1, 2,… , n.

Proposition 3.2.2. The quotient of the product X1 ×X2 ×… ×Xn by the action of G6,n has

a crepant resolution of singularities which is a Calabi-Yau manifold and such that the action

of ℤn
6 on X1 ×X2 ×… ×Xn lifts to a purely non-symplectic action of ℤ6 on this resolution.

Proof. For n = 2 this is Proposition 3.2.1. For an inductive approach notice that

X1 ×X2 ×… ×Xn
/

G6,n
≃

(

X1 ×X2 ×… ×Xn−1
/

G6,n−1

)

×Xn/

ℤ6
.

By the inductive hypothesis the quotient X1 ×X2 ×… ×Xn−1
/

G6,n−1
has a crepant resolu-

tion X: and the action of G6,n−1 lifts to X: as a purely non-symplectic action of ℤ6. Using
Proposition 3.2.1 again we conclude the proof.

As a special case we get:
Theorem 3.2.3. There exists a crepant resolution

En
6
/

G6,n

:
→ En

6
/

G6,n
.

Consequently, X6,n ∶=
En
6
/

G6,n

:
is an n-dimensional Calabi-Yau manifold.

Remark 3.2.4. In the constructed crepant resolution ofEn
6
/

G6,n
we need a suitable toric reso-

lution, as the iterated approach in [CH07] leads to a local action of type (�6, �6, �56 , �56 ), which
has no junior elements and so the quotients does not admit any crepant resolution.

Also, we were not able to use a factorisation of an action of order 6 into an action of order
2 and 3. Indeed the second power of the action (iv) in the proof of Proposition 3.2.1 is equal
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to (�3, �3, �23 , �23 , 1,…), which again has no junior element and consequently no crepant reso-
lution. The third power of the action (iii) equals (−1, 1,−1, 1,…) and the factorization into
an action of order 2 followed by an action of order 3 gives inverse local chart

(

x3

z
,
xy
z
, z

3

x3

)

.
In this chart the action of �1 lifts to the resolution as (−1, �6,−1). In the next step we get
an action (�6, �36 , �56 , �56 ) with the third power equal to (−1,−1,−1,−1), which clearly has no
crepant resolution.

§ 3.3 Hodge numbers

In order to compute Hodge diamonds of constructed varities we will use methods described
in 2.3.

3.3.1 d = 6

From table 5.3 and theorem 2.3.3 we get:

ℎp,q
(

En
6
/

G6,n

: )

=

=

{

(

(1 +XY ) ⋅ 6
√

(XY )0 + 1 ⋅ 6
√

XY + 2 ⋅ 6
√

(XY )2 + 2 ⋅ 6
√

(XY )3 + 2 ⋅ 6
√

(XY )4 + 1 ⋅ 6
√

(XY )5
)n
+

+
(

X ⋅ 6
√

(XY )0 + 0 ⋅ 6
√

XY + 0 ⋅ 6
√

(XY )2 + 0 ⋅ 6
√

(XY )3 + 0 ⋅ 6
√

(XY )4 + 0 ⋅ 6
√

(XY )5
)n
+

+
(

0 ⋅ 6
√

(XY )0 + 0 ⋅ 6
√

XY + 0 ⋅ 6
√

(XY )2 + 1 ⋅ 6
√

(XY )3 + 0 ⋅ 6
√

(XY )4 + 0 ⋅ 6
√

(XY )5
)n
+

+
(

0 ⋅ 6
√

(XY )0 + 0 ⋅ 6
√

XY + 1 ⋅ 6
√

(XY )2 + 0 ⋅ 6
√

(XY )3 + 1 ⋅ 6
√

(XY )4 + 0 ⋅ 6
√

(XY )5
)n
+

+
(

0 ⋅ 6
√

(XY )0 + 0 ⋅ 6
√

XY + 0 ⋅ 6
√

(XY )2 + 1 ⋅ 6
√

(XY )3 + 0 ⋅ 6
√

(XY )4 + 0 ⋅ 6
√

(XY )5
)n
+

+
(

Y ⋅ 6
√

(XY )0 + 0 ⋅ 6
√

XY + 0 ⋅ 6
√

(XY )2 + 0 ⋅ 6
√

(XY )3 + 0 ⋅ 6
√

(XY )4 + 0 ⋅ 6
√

(XY )5
)n
}

[XpY q] =

=

{

Xn + Y n +
(

1 +XY + 6
√

XY + 2 6
√

(XY )2 + 2 6
√

(XY )3 + 2 6
√

(XY )4 + 6
√

(XY )5
)n
+

+ 2 ⋅ (XY )
n
2 +

(

6
√

(XY )2 + 6
√

(XY )4
)n

}

[XpY q].
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3.3.2 d = 4

From table 5.5 and theorem 2.3.3 we get:

ℎp,q
(

En
4
/

G4,n

: )

=

{

Xn+Y n+
(

1 +XY + 2 4
√

XY + 3 4
√

(XY )2 + 2 4
√

(XY )3
)n
+
(

4
√

(XY )2
)n

}

[XpY q].

3.3.3 d = 3

From table 5.7 and theorem 2.3.3 we get:

ℎp,q
(

En
3
/

G3,n

: )

=
{

Xn + Y n +
(

1 +XY + 3 3
√

XY + 3 3
√

(XY )2
)n}

[XpY q] =

=
{

Xn + Y n +
(

1 + 3
√

XY
)3n

}

[XpY q].

3.3.4 d = 2

From table 5.9 and theorem 2.3.3 we get:

ℎp,q
(

En
2
/

G2,n

: )

=
{

(X + Y )n +
(

1 +XY + 4
√

XY
)n}

[XpY q]

Summarizing, we proved the following theorem:

Theorem 3.3.1. The Hodge number ℎp,q(Xd,n) =
{

FXd,n
(X, Y )

}

[XpY q] of the manifoldXd,n

is equal to

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{

(X + Y )n +
(

XY + 4
√

XY + 1
)n}

[XpY q] if d = 2,
{

Xn + Y n +
(

1 + 3
√

XY
)3n

}

[XpY q] if d = 3,
{

Xn + Y n +
(

1 +XY + 2 4
√

XY + 3 4
√

(XY )2 + 2 4
√

(XY )3
)n
+
(

4
√

(XY )2
)n

}

[XpY q] if d = 4,
{

Xn + Y n +
(

1 +XY + 6
√

XY + 2 6
√

(XY )2 + 2 6
√

(XY )3 + 2 6
√

(XY )4 + 6
√

(XY )5
)n
+

+ 2 ⋅ (XY )
n
2 +

(

6
√

(XY )2 + 6
√

(XY )4
)n

}

[XpY q] if d = 6.

Substituting appropriate roots of unity into the above formulas we get:

56



Corollary 3.3.2. The Euler characteristic of manifold Xd,n equals

e
(

Xn
d

)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
2
(6n + 3(−2)n) if d = 2,
1
3
(8n + 8(−1)n) if d = 3,

1
4
(9n + 3) + 3(−1)n if d = 4,
1
6
(10n + 3 ⋅ 2n + 8) + 4(−1)n if d = 6.

Remark 3.3.3. Theorem 3.3.1 yields

ℎ1,n−1(X2,n) = ℎ1(X2,n) = n

for d = 2 and n > 2. Therefore, by the Tian-Todorov unobstructedness theorem the deforma-
tion space ofX2,n has dimension n.On the other hand our construction involves n independent
elliptic curves, so it depends on n parameters. Consequently the family X2,n is locally com-
plete.

If n > 2 and d = 3, 4, 6 we get

ℎ1,n−1(Xd,n) = 0,

so the Calabi-Yau manifold Xd,n is rigid.

3.3.5 Another method of computing Hodge numbers

In [Bur20] we used another approach for computing Hodge numbers of varieties Xd,n based
on a systematic study of orbits of the action ofGd,n. The method is very complex and we were
not able to generalize it to the case of Calabi-Yau manifold other than elliptic curves.

For the sake of completeness we decided to reproduce a sketch of that proof.
Let E be an elliptic curve. Combining Künneth’s formula with a standard induction ar-

gument we see that
ℎp,q(En) =

(

n
p

)(

n
q

)

, for 1 ≤ p, q ≤ n.

We begin with the following:
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Lemma 3.3.4. For any 1 ≤ p, q ≤ n, the following equalities hold

dimHp,q(En
d)
Gd,n =

⎧

⎪

⎨

⎪

⎩

(n
p

) if p = q or p + q = n but n ≠ 2p,
2
(n
p

) if p = q and p + q = n,
0 otherwise,

for d = 2.

dimHp,q(En
d)
Gd,n =

{
(n
p

) if p = q or (p, q) ∈ {(0, n), (n, 0)},
0 otherwise, for d = 3, 4, 6.

Proof. The Hodge vector spaceHp,q(En
d) is generated by differential forms of the following

shape
dzi1 ∧ dzi2 ∧… ∧ dzip ∧ dzj1 ∧ dzj2 ∧… ∧ dzjq .

In the case of d = 2, we see that such (p, q)-form is G2,n invariant if and only if

• p + q = n and {i1, i2,… , ip, j1, j2,… , jq} = {1, 2,… , n} or

• p = q and {i1, i2,… , ip} = {j1, j2,… , jq}.

Each of the cases provides (n
p

) choices.
Suppose that there exist indices k ∈ {i1, i2,… , ip}⧵{j1, j2,… , jq}, and l ∈ {1, 2,… , n}⧵

{i1, i2,… , ip, j1, j2,… , jq} and without loss of generality assume that k < l. Then given
(p, q)-form is not invariant under

(

1,… , −1
⏟⏟⏟
k−th place

,… −1
⏟⏟⏟
l−th place

,…1
)

.

In a similar way we prove the formula for d = 3, 4, 6.

ℤ∕6ℤ action

From the orbifold formula we get

(3.3.1) H i,j(X6,n) ∶=
⨁

g∈G6,n

(

⨁

U∈Λ(g)
H i−age(g), j−age(g)(U )

)G6,n

,

where, Λ(g) denotes the set of irreducible connected components of the set fixed by g ∈ G6,n
and age(g) is the age of the matrix of linearised action of g near a point of U .

Now consider an element

gu,v,w,s,t ∶=
(

1,… , 1
⏟⏟⏟

u

, 2,… , 2
⏟⏟⏟

v

, 3,… , 3
⏟⏟⏟

w

, 4,… , 4
⏟⏟⏟

s

, 5,… , 5
⏟⏟⏟

t

, 0,… , 0
⏟⏟⏟

l∶=n−u−v−w−s−t

)

∈ G6,n,
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where 6 ∣ u+ 2v+ 3w+ 4s+ 5t, which corresponds to an automorphism of En
6 such that the

local action near a component of the fixed locus linearizes to
(

�6,… , �6
⏟⏞⏟⏞⏟

u

, �26 ,… , �26
⏟⏞⏞⏟⏞⏞⏟

v

, �36 ,… , �36
⏟⏞⏞⏟⏞⏞⏟

w

, �46 ,… , �46
⏟⏞⏞⏟⏞⏞⏟

s

, �56 ,… , �56
⏟⏞⏞⏟⏞⏞⏟

t

, 1,… , 1
⏟⏟⏟

l

)

.

Then age (gu,v,w,s,t) = u+2v+3w+4s+5t
6

.

• The action of �6 and �56 have one fixed point: a, which stands for the infinity point of
E6.

• The action of �26 and �46 have three fixed points:

a, b ∶= (0, 1), c ∶= (0,−1)

from which only a is invariant under �6 and the remaining two form a 2-cycle.
• The action of �36 has four fixed points:

a, d ∶= (1, 0), e ∶= (�3, 0), f ∶= (�23 , 0)

from which only a is invariant under �6 and the remaining three form a 3-cycle.

If l = n i.e. (u, v,w, s, t) = (0, 0, 0, 0, 0), then Fix(gu,v,w,s,t) = En
6 and according to 3.3.4

the contribution to Poincaré polynomial corresponding to gu,v,w,s,t is equal to

Xn + Y n + (1 +XY )n.

We shall study orbits of the action of G6,n on the set of irreducible components Λ(g) of
Fix(g) or equivalently on the finite set F (g) ∶= Fix(�g16 ) ×… × Fix(�gn−l6 ), where gi denotes
i-th coordinate of g.

If u ≠ 0 or t ≠ 0 or l ≠ 0 then fixing i ∈ {1, 2,… , n} such that gi ∈ {1, �6, �56} and
taking the element ℎ = (ℎ1, ℎ2,… , ℎn) ∈ G6,n, where

ℎk ∶=

⎧

⎪

⎨

⎪

⎩

�56 if k = i,
�6 if k = j,
1 if k ∉ {i, j},

for j ∈ {1, 2,… , n} ⧵ {i},

we see that each orbit of the action contains a unique element x ∶= (x1, x2,… , xn−l) with
xi ∈ {a, d}. The same holds true if (v ≠ 0 or s ≠ 0) and w ≠ 0. Consequently the number
of orbits equals 2v+w+s unless w = n or v + s = n.
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On the other hand in the case w = n each orbit of the action contains either a unique ele-
ment x = (x1, x2,… , xn)with xi ∈ {a, d} or one of the following two elements: (d, d,… , d, e)

or (d, d,… , d, f ). Therefore we get 2v+w+s + 2 orbits in this situation.
Similar arguments show that in the case v + s = n we get 2v+w+s + 1 orbits. As

(

⨁

U∈Λ(g)
H i−age(g), j−age(g)(U )

)G6,n

=

(

⨁

U∈Λ(g)
H i−age(g), j−age(g)(U )G6,l

)G6,n

we get

dim

(

⨁

U∈Λ(g)
H i,j(U )

)G6,n

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if (i, j) ∈ {(n, 0), (0, n)}, u = 0,
2v+w+s

(l
i

) if 0 ≤ i = j ≤ l, w ≠ n, v + s ≠ n,
2v+w+s + 2 if w = n, i = j = 0,
2v+w+s + 1 if v + s = n, i = j = 0,
0 otherwise .

Therefore the number ℎp,q(X6,n) is equal to the coefficient of XpY q in the polynomial:

Xn + Y n +
n
∑

u=0

(

n
u

) n−u
∑

v=0

(

n − u
v

) n−u−v
∑

w=0

(

n − u − v
w

) n−u−v−w
∑

s=0

(

n − u − v −w
s

)

×

×
n−u−v−w−s

∑

t=0

(

n − u − v −w − s
t

) l
∑

j=0

(

l
j

)

⋅ 2v+w+s(XY )j+
u+2v+3w+4s+5t

6 + 2 ⋅ (XY )
n
2+

+
n
∑

v=0

(

n
v

)

(XY )
1
6 (2v+4(n−v)) = Xn + Y n +

n
∑

u=0

(

n
u

)

(

6
√

XY
)u n−u∑

v=0

(

n − u
v

)

(

2 6
√

(XY )2
)v
×

×
n−u−v
∑

w=0

(

n − u − v
w

)

(

2 6
√

(XY )2
)w n−u−v−w

∑

s=0

(

n − u − v −w
s

)

(

2 6
√

(XY )2
)s
×

×
n−u−v−w−s

∑

t=0

(

n − u − v −w − s
t

)

(

6
√

(XY )2
)t l
∑

j=0

(

l
j

)

(XY )j + 2 ⋅ (XY )
n
2+

+
(

6
√

(XY )2 + 6
√

(XY )4
)n
=

= Xn + Y n +
(

1 +XY + 6
√

XY + 2 6
√

(XY )2 + 2 6
√

(XY )3 + 2 6
√

(XY )4 + 6
√

(XY )5
)n
+

+ 2 ⋅ (XY )
n
2 +

(

6
√

(XY )2 + 6
√

(XY )4
)n
.

ℤ∕4ℤ action

Consider
gu,v,w =

(

1,… , 1
⏟⏟⏟

u

, 2,… , 2
⏟⏟⏟

v

, 3,… , 3
⏟⏟⏟

w

, 0,… , 0
⏟⏟⏟
n−u−v−w

)

∈ G4,n,
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where 4 ∣ u + 2v + 3w. Then age (gu,v,w) = u+2v+3w
4

.

Repeating the above arguments we get
{

FX4,n(X, Y )
}

[XpY q] = Xn + Y n + 1
2

{

n
∑

u=0

n−u
∑

v=0

n−u−v
∑

w=0

n−u−v−w
∑

j=0
2v+w ⋅ 3v×

×
(

n
u

)(

n − u
v

)(

n − u − v
w

)(

n − u − v −w
j

)

(XY )j+
u+2v+3w

4 +
(

4
√

(XY )2
)n

}

[XpY q] =

=

{

Xn + Y n +
(

1 +XY + 2 4
√

XY + 3 4
√

(XY )2 + 2 4
√

(XY )3
)n
+
(

4
√

(XY )2
)n

}

[XpY q].

ℤ∕3ℤ action

Take
gu,v =

(

1,… , 1
⏟⏟⏟

u

, 2,… , 2
⏟⏟⏟

v

, 0,… , 0
⏟⏟⏟
n−u−v

)

∈ G3,n,

where 3 ∣ u + 2v. Then age (gu,v) = u+2v
3
, hence from the orbifold formula we obtain

{

FX3,n(X, Y )
}

[XpY q] =

=

{

Xn + Y n +
n
∑

u=0

n−u
∑

v=0

n−u−v
∑

j=0
3u3v

(

n
u

)(

n − u
v

)(

n − u − v
j

)

(XY )j+
u+2v
3

}

[XpY q] =

=
{

Xn + Y n +
(

1 +XY + 3 3
√

XY + 3 3
√

(XY )2
)n}

[XpY q] =

=
{

Xn + Y n +
(

1 + 3
√

XY
)3n

}

[XpY q] =

=
{

Xn + Y n + 1
3

(

(

1 + 3
√

XY
)3n

+
(

1 + �3
3
√

XY
)3n

+
(

1 + �23
3
√

XY
)3n

)}

[XpY q].

ℤ∕2ℤ action

From 3.3.4 we encode the Hodge numbers of fixed part of cohomology by the following
generating polynomial function

n
∑

p,q=0
dimHp,q(En

2)
G2,nXpY q = (1 +XY )n + (X + Y )n.

Consider
gu = (1,… , 1

⏟⏟⏟
u

, 0,… , 0
⏟⏟⏟

n−u

) ∈ G2,n,
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an arbitrary element of G2,n, where u is even. Then from the orbifold formula we have

{

FX2,n(X, Y )
}

[XpY q] =

{

(X + Y )n +
n
∑

u=0

n−u
∑

j=0
4u
(

n
u

)(

n − u
j

)

(XY )j+
u
2

}

[XpY q] =

=
{

(X + Y )n +
(

1 +XY + 4
√

XY
)n}

[XpY q] =

=
{

(X + Y )n + 1
2

((

1 +XY + 4
√

XY
)n
+
(

1 +XY − 4
√

XY
)n)}

[XpY q].

§ 3.4 Zeta functions

In this section we shall compute zeta functions of Calabi-Yau varietiesXd,n using the method
introduced in section 2.7. The zeta function of Xd,n depends on an explicit model of the
elliptic curve Ed over ℤ, so we stick with the equations given in 3.1.

3.4.1 d = 6

For the elliptic curve E6 with automorphism of order 6 the corresponding table 2.2 is equal
to

k
j 0 1 2 3 4 5

0 1
(1 − T )(1 − qT )

1 − �qT 1 1 1 1 − �qT

1 1
1 − T

1 1 1 1 1

2 1
(1 − T )2

1 1 1
1 − T

1 1

3 1
(1 − T )2

1 1
1 − T

1 1
1 − T

1

4 1
(1 − T )2

1 1 1
1 − T

1 1

5 1
1 − T

1 1 1 1 1

Table 3.1: Local zeta functions of E6

Here �q and �q denote algebraic integers of modulus equal to√q.
Therefore by 2.7.1 we get
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Zq
(

X6,n
)

=

[(

1
(1 − T )(1 − q ⋅ T )

⋅
1

(1 − 6
√

q ⋅ T )
⋅

1
(1 − 6

√

q2 ⋅ T )2
⋅

1
(1 − 6

√

q3 ⋅ T )2
⋅

⋅
1

(1 − 6
√

q4 ⋅ T )2
⋅

1
(1 − 6

√

q5 ⋅ T )

)]⊗n

×
[

(1 − �qT )
]⊗n

×

[(

1
1 − 6

√

q3 ⋅ T

)]⊗n

×

×

[(

1
1 − 6

√

q2 ⋅ T
⋅

1
1 − 6

√

q4 ⋅ T

)]⊗n

×

[(

1
1 − 6

√

q3 ⋅ T

)]⊗n

×
[

(1 − �q ⋅ T )
]⊗n

=

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
n
∏

i=0
(1 − qiT )ℎi,i(X6,n)

(

1 − �qnT
) (

1 − �qnT
)

if 2 ∣ n,

(

1 − �qnT
) (

1 − �qnT
)

n
∏

i=0
(1 − qiT )ℎi,i(X6,n)

if 2 ∤ n.

3.4.2 d = 4

For the elliptic curve E4 with automorphism of order 4 the corresponding table 2.2 is equal
to

k
j 0 1 2 3

0 1
(1 − T )(1 − qT )

1 − �qT 1 1 − �qT

1 1
(1 − T )2

1 1 1

2 1
(1 − T )3

1 1
1 − T

1

3 1
(1 − T )2

1 1 1

Table 3.2: Local zeta functions of E4

Therefore by 2.7.1 we get
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Zq
(

X4,n
)

=

[(

1
(1 − T )(1 − q ⋅ T )

⋅
1

(1 − 4
√

q ⋅ T )2
⋅

1
(1 − 4

√

q2 ⋅ T )3
⋅

1
(1 − 4

√

q3 ⋅ T )2

)]⊗n

×

×
[

(1 − �qT )
]⊗n

×

[(

1
1 − 4

√

q2 ⋅ T

)]⊗n

×
[

(1 − �q ⋅ T )
]⊗n

=

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
n
∏

i=0
(1 − qiT )ℎi,i(X4,n)

(

1 − �qnT
) (

1 − �qnT
)

if 2 ∣ n,

(

1 − �qnT
) (

1 − �qnT
)

n
∏

i=0
(1 − qiT )ℎi,i(X4,n)

if 2 ∤ n.

3.4.3 d = 3

For elliptic curve E3 with automorphism of order 3 the corresponding table 2.2 is equal to

k
j 0 1 2

0 1
(1 − T )(1 − qT )

1 − �qT 1 − �qT

1 1
(1 − T )3

1 1

2 1
(1 − T )3

1 1

Table 3.3: Local zeta functions of E3

Therefore by 2.7.1 we get
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Zq
(

X3,n
)

=

[(

1
(1 − T )(1 − q ⋅ T )

⋅
1

(1 − 3
√

q ⋅ T )3
⋅

1
(1 − 3

√

q2 ⋅ T )3

]⊗n

×

×
[

(1 − �qT )
]⊗n

×
[

(1 − �q ⋅ T )
]⊗n

=

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
n
∏

i=0
(1 − qiT )ℎi,i(X3,n)

(

1 − �qnT
) (

1 − �qnT
)

if 2 ∣ n,

(

1 − �qnT
) (

1 − �qnT
)

n
∏

i=0
(1 − qiT )ℎi,i(X3,n)

if 2 ∤ n.

Summarizing, we proved the following theorem

Theorem 3.4.1. The zeta function of the manifold Xd,n is equal to

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
n
∏

i=0
(1 − qiT )ℎi,i(Xd,n)

(

1 − �qnT
) (

1 − �qnT
)

if 2 ∣ n,

(

1 − �qnT
) (

1 − �qnT
)

n
∏

i=0
(1 − qiT )ℎi,i(Xd,n)

if 2 ∤ n.

3.4.4 d = 2

In this case E is an arbitrary elliptic curve so we cannot describe �q and �q in general. How-
ever �q + �q is the trace aq of Frobenius morphism Frob∗q on H∗∗(E). Now �nq + �q

n can be
computed as a polynomial in aq.

The corresponding table 2.2 which will be discuss in Chapter 5 is equal to
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k
j 0 1

0 1
(1 − T )(1 − qT ) 1 − aqT + qT 2

1

1
(1 − T )4

,

1
(1 − T )3(1 + T )

,

1
(1 − T )2(1 + T + T 2)

1

Table 3.4: ZE,k,j(T )

Here we have three possible rational functionsZE,1,0 depending on number of fixed point
of an involution on E defined over ℚ.We give only formulas for n = 2, 3 since the general
one is too complicated.

When ZE,1,0 =
1

(1 − T )4
by 2.7.1 we get

n Zq

(En/

ℤn−1
2

: )

2
1

(1 − T )(1 − qT )20(1 + 2qT − a2qT + q2T 2)(1 − q2T )

3
(1 − qaqT + q3T 2)3(1 + 3qaqT − a3qT + q

3T 2)

(1 − T ) (1 − qT )51
(

1 − q2T
)51 (1 − q3T

)

Table 3.5: Zeta function of X2,2, X2,3

When ZE,1,0 =
1

(1 − T )3(1 + T )
by 2.7.1 we get

n Zq

(En/

ℤn−1
2

: )

2
1

(1 − T )(1 − qT )14(1 + qT )6(1 + 2qT − a2qT + q2T 2)(1 − q2T )

3
(1 − qaqT + q3T 2)3(1 + 3qaqT − a3qT + q

3T 2)

(1 − T ) (1 − qT )33 (1 + qT )18
(

1 − q2T
)33 (1 + q2T

)18 (1 − q3T
)

Table 3.6: Zeta function of X2,2, X2,3
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When ZE,1,0 =
1

(1 − T )2(1 + T + T 2)
by 2.7.1 we get

n Zq

(En/

ℤn−1
2

: )

2
1

(1 − T )(1 − qT )10(1 + qT + q2T 2)5(1 + 2qT − a2qT + q2T 2)(1 − q2T )

3
(1 − qaqT + q3T 2)3(1 + 3qaqT − a3qT + q

3T 2)

(1 − T ) (1 − qT )21
(

1 + qT + q2T 2
)15 (1 − q2T

)21 (1 + q2T + q4T 2
)15 (1 − q3T

)

Table 3.7: Zeta function of X2,2, X2,3

Remark 3.4.2. In [CH07] authors computed L-function of varieties Xd,n for d = 2, 3 ∶

L(Xd,n, s) =

{

L(gn+1, s), for d = 3, where gn+1 is a weight n + 1 cusp form with CM in ℚ(
√

−3)
L(gn+1, s), for d = 4, where gn+1 is a weight n + 1 cusp form with CM in ℚ(i)

,
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Chapter 4

Zariski varieties

In this chapter we discuss rationality problems in algebraic geometry. We shall use Cynk-
Hulek construction in order to extend result of Katsura-Schuett to obtain higher dimensional
Calabi-Yau manifolds, which are Zariski varieties.

§ 4.1 Rationality problems in algebraic geometry

Let us begin with the following definition which is crucial for the present section:

Definition 4.1.1. AvarietyX is unirational if there exists a dominant rationalmap ℙn // X ,
X is rational if there exists a birational map ℙn ∼ // X .

Of course, the definition of unirationality of variety can be stated in terms of field exten-
sions i.e. X is unirational if and only if its functional field ℂ(X) has a finite extension, which
is a purely transcendental extension over ℂ.

The classical problem of Lüroth asks whether every unirational variety is rational. There-
fore Lüroth’s problems asks whether any extension ofℂ contained inℂ(t1, t2,… , tn) is purely
transcendental.

For curves it was proven by Lüroth ([Lür75]). In dimension 2 Castelnuovo found a cri-
terion for surface to being rational i.e. smooth, projective surface S is rational if and only if
p2(S) = q(S) = 0, where p2(S) ∶= ℎ0(X,!2S) and q(S) ∶= ℎ1(S,S). If we have domi-
nant rational map ℙ2 // S , then of course p2(S) = q(S) = 0 and so S is rational, hence
Lüroth’s question for surfaces remains true.

In the beginning of 20 century first counter-example to Lüroth’s problem in dimension
3 was constructed by Enriques ([Enr12]) as a complete intersection of quadric and cubic in
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ℙ5. After 50 years three different counter-examples appeared, together with new methods.
Precisely:

• Clemens-Griffiths in [CG72] proved that smooth cubic threefolds in ℙ4 (which are in
fact unirational) are not rational. The idea was to show that intermediate jacobian of
such varieties is not a Jacobian.

• Iskovskikh-Manin in [IM72] proved that a smooth quartic threefolds in ℙ4 is not ra-
tional. Since there exists known examples of unirational quartic threefolds, this result
leads to another counter-example to Lüroth’s problem. The idea was to compare bira-
tional automorphisms group of quartic threefold (which is finite) with corresponding
automorphisms group of ℙ3 (in fact very large).

• Artin-Mumford in [AM72] proved that double cover of ℙ3 branched along a quartic
surface in ℙ3 with 10 nodes is unirational and not rational. The idea was to show
that torsion of third cohomology group of this variety is non-trivial, leading to new
birational invariant.

We refer to book [Bea+16] for a very good and complete exposition of the past and mod-
ern approaches in these problems.

In positive characteristic Lüroth’s theorem is still true (over algebraically closed field) in
one dimensional case, but this is no longer true for surfaces as was first shown by Zariski
([Zar58]).
Definition 4.1.2. An algebraic (non-rational) surface S, over algebraically closed field of
characteristic p is called a Zariski surface if there exists a purely inseparable dominant rational
map ℙ2 // X of degree p.

The above definition allows us to thinking about Zariski surfaces as a first non-rational
and unirational surfaces over algebraically closed field of characteristic p.

§ 4.2 Zariski K3 surfaces

From [Shi74] it follows that Zariski surfaces S are automatically supersingular i.e.

second Betti number of S = Picard number of S.

This implication leads to the following question, originally posed by Shioda in [Shi77]:
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Question 4.2.1. Is any supersingular surface a Zariski surface?
There are some partial results in this question concerning supersingularK3 surfaces. Uni-

rationality of supersingularK3 surfaces is known in characteristic 2, this results was proven in
[RŠ78] by Rudakov and Shafarevich. Moreover Artin and Shioda in papers [Art74], [Shi74]
constructed supersingular K3 surfaces which are unirational. Today, all these results are di-
rect consequence of the result of Liedtke (cf. [Lie15]), who proved that all supersingular K3
surfaces are unirational.

Lack of general results and constructions in arbitrary large characteristics indicates that
the answer to 4.2.1 in full generality might be difficult. Recently Katsura and Shütt in [KS20]
gave partial answer to restricted question:
Question 4.2.2. Is any supersingular Kummer surface is a Zariski surface?

Katsura and Schütt constructed first examples of Zariski K3 surfaces using the classical
Kummer construction in dimension 2. The crucial part of their idea was a special endomor-
phism of supersingular elliptic curves admitting automorphisms of order 3 and 4.They proved
the following theorem:
Theorem 4.2.3. Let p > 2 be a prime such that p ≢ 1 (mod 12). Then any supersingular

Kummer surface in characteristic p is a Zariski surface.

In particular they constructed first example of K3 surface which is a Zariski variety.

§ 4.3 Zariski Calabi-Yau varieties

In this section we extend the argument given in [KS20] to obtain higher dimensional Calabi-
Yau manifolds, which are Zariski varieties.
Definition 4.3.1. An algebraic (non-rational) variety X of dimension n, over algebraically
closed field of characteristic p is called a Zariski variety if there exists a purely inseparable
dominant rational map ℙn // X of degree p.

4.3.1 ℤ∕3ℤ action

Let E3,i be the elliptic curve given by the equation y2i + yi = x3i , for i ∈ {1, 2,… , n} with the
�3 action �3∶ (x, y)↦ (�3x, y) and consider groups

Fi ∶=
⟨

(�3, 1,… , 1, � i3), (1, �3, 1,… , 1, � i3), … , (1,… , 1, �3, � i3)
⟩

≃ ℤn−1
3 ≃ G3,n,
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for i = 1, 2.

Lemma 4.3.2. The quotient variety Z3,n ∶=
E3,1 × E3,2 ×… × E3,n/F1

is rational.

Proof. The monomial xi11 xi22 ⋅… ⋅ xinn y
j1
1 y

j2
2 ⋅… ⋅ yjnn is invariant under F1 iff 3 ∣ in + ik for

1 ≤ k < n, thus

ℂ[Z3,n] ≃ ℂ[y1, y2,… , yn, x1x2… xn−1x
2
n, x

2
1x
2
2… x2n−1xn].

Now let z ∶= x1x2… xn−1
xn

and observe that

ℂ(Z3,n) = ℂ(y1, y2,… , yn, z),

since
x1x2… xn−1x

2
n = z(y

2
n + yn) and x21x

2
2… x2n−1xn = z

2(y2n + yn).

Moreover we have the following relation

z3 =
(

x1x2… xn−1
xn

)3

=
(y21 + y1)(y

2
2 + y2)… (y2n−1 + yn−1)
y2n + yn

or equivalently
(y21 + y1)(y

2
2 + y2) ⋅… ⋅ (y2n−1 + yn−1) = z

3(y2n + yn).

Taking � ∶= yn
yn−1

, we get the equation

(y21 + y1)(y
2
2 + y2) ⋅… ⋅ (y2n−2 + yn−2)(yn−1 + 1) = z

3�(�yn−1 + 1),

from which we can compute yn−1 and yn = �yn−1 as rational functions in y1, y2, … , yn−2,

z, �. Hence the variety Z3,n is rational.

Now, consider a prime number p ≡ 2 (mod 3) and the supersingular elliptic curve E3
over a field k, such that �3 ∈ k and char k = p, defined by equation y2 + y = x3, and with the
�3 action �3∶ (x, y)↦ (�3x, y). The endomorphism ring of E3 may be represented as

End(E3) = ℤ⊕ ℤF ⊕ ℤ�3 ⊕ ℤ
(1 + F )(2 + �3)

3
,

where F is a Frobenius morphism of E3, with the relation F�3 = �23F (cf. [Kat87]).

Theorem 4.3.3. The Calabi-Yau manifold E
n
3
/

F2

:
= X3,n is a Zariski manifold.
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Proof. Commutativity of the following diagram

En
3 En

3

En
3 En

3

↻

F1

1 ×… × 1 × F 1 ×… × 1 × F

F2

leads to purely inseparable rational map En
3
/

F1
⟶

En
3
/

F2
of degree p. Since En

3
/

F1
by

4.3.2 is a rational variety, the theorem follows.

4.3.2 ℤ∕4ℤ action

Let E4,i be the elliptic curve given by the equation y2i = x3i − xi, for i ∈ {1, 2,… , n} with the
�4 action �4∶ (x, y)↦ (−x, iy) and consider groups

Hi ∶=
⟨

(�4, 1,… , 1, � i4), (1, �4, 1,… , 1, � i4), … , (1,… , 1, �4, � i4)
⟩

≃ ℤn−1
4 ≃ G4,n,

for i = 1, 3.
As in the previous section the following lemma holds

Lemma 4.3.4. The quotient variety Z4,n ∶=
E4,1 × E4,2 ×… × E4,n/H1

is rational.

Proof. The monomial xa11 xa22 … xann y
b1
1 y

b2
2 … ybnn is invariant underH1 iff either

(1) 2 ∣ ai + an and 4 ∣ bi + bn for 0 ≤ i < n, which are generated by

y41, y
4
2, … , y4n, y1y2… yn−1y

3
n, y

3
1y
3
2… y3n−1yn, x

2
1, x

2
2, … , x2n, x1x2… xn−1xn

or

(2) 2 ∤ ai + an and bi + bn ≡ 2 (mod 4) for 0 ≤ i < n, which are generated by

y21y
2
2… y2n−1x1x2… xn−1, y

2
1y
2
2… y2n−1xn, y1y2… ynx1x2… xn−1

y1y2… ynxn, y
2
nx1x2… xn−1, y

2
nxn, y

3
1y
3
2… y3n−1y

3
nx1x2… xn−1

y31y
3
2… y3n−1y

3
nxn, y

2
1y
2
2… y2n−1y

4
nxn, y

2
1y
2
2… y2n−1y

4
nx1x2… xn−1.

Let us take ti ∶= x2i , z1 =
x1x2… xn−1

xn
and z2 =

y1y2… yn−1
yn

and observe that

ℂ(Z4,n) = ℂ
(

t1, t2,… , tn, z2
)

,
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indeed it follows from identities

y4i = t
3
i − 2t

2
i + ti, y1y2… yn−1y

3
n = z2y

4
n, y

3
1y
3
2… y3n−1yn = z

3
2y
4
n,

x1x2… xn−1xn = z1tn, y
2
nxn = tn(tn − 1), y

2
1y
2
2… y2n−1x1x2… xn−1 = z1z

2
2 ⋅ (y

2
nxn),

y21y
2
2… y2n−1xn = z

2
2 ⋅ (y

2
nxn), y1y2… ynx1x2… xn−1 = z2 ⋅ (y2nxn) ⋅ z1,

y1y2… ynxn = z2 ⋅ (y2nxn), y
2
nx1x2… xn−1 = (y2nxn) ⋅ z1, y

3
1y
3
2… y3n−1y

3
nxn = z

3
2y
4
n ⋅ (y

2
nxn),

y31y
3
2… y3n−1y

3
nx1x2… xn−1 = z

3
2 ⋅ (y

2
nxn) ⋅ y

4
nz1, y

2
1y
2
2… y2n−1y

4
nxn = z

2
2 ⋅ (y

2
2xn) ⋅ y

4
n,

y21y
2
2… y2n−1y

4
nx1x2… xn−1 = z22 ⋅ (y

2
2xn) ⋅ y

4
nz1, z1 =

z22(tn − 1)
(t1 − 1)(t2 − 1)… (tn−1 − 1)

.

The variety Z4,n may be defined by the equation

z42tn(tn − 1)
2 = t1t2… tn−1(t1 − 1)2(t2 − 1)2…(tn−1 − 1)2.

Taking � ∶= tn − 1
tn−1 − 1

, we get the equation

z42�
2(�(tn−1 − 1) + 1) = t1t2… tn−1(t1 − 1)2(t2 − 1)2…(tn−2 − 1)2,

which is linear in tn−1, so

ℂ(Z4,n) = ℂ(t1, t2,… , tn−2, z, �).

Now, we assume p ≡ 3 (mod 4). Consider the supersingular elliptic curve E4 defined by
the equation y2 = x3 − x with order 4 automorphism �4(x, y) = (−x, iy). The endomorphism
ring of E4 may be represented as

End(E4) = ℤ⊕ ℤ�4 ⊕ ℤ
(1 + F

2

)

⊕ ℤ�4
(1 + F

2

)

with the relation F�4 = �34F (cf. [Kat87]).

Theorem 4.3.5. The Calabi-Yau manifold E
n
4
/

H3

:
= X4,n is a Zariski manifold.

Proof. The commutativity of the diagram

En
4 En

4

En
4 En

4

↻

H1

1 ×… × 1 × F 1 ×… × 1 × F

H3
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leads to purely inseparable rational map En
4
/

H1
⟶

En
4
/

H3
of degree p. Since En

4
/

H1
by 4.3.2 is a rational variety, the theorem follows.

4.3.3 ℤ∕6ℤ action

Let E6,i be the elliptic curve given by the equation y2i + yi = x3i , for i ∈ {1, 2,… , n} with the
�6 action �6∶ (x, y)↦ (�3x,−y − 1) and consider groups

Ji ∶=
⟨

(�6, 1,… , 1, � i6), (1, �6, 1,… , 1, � i6), … , (1,… , 1, �6, � i6)
⟩

≃ ℤn−1
6 ≃ G6,n,

for i = 1, 5.
Lemma 4.3.6. The quotient variety Z6,n ∶=

E6,1 × E6,2 ×… × E6,n/J1
is rational.

Proof. Themonomials xa11 xa22 … xann y
b1
1 y

b2
2 … ybnn are invariant under J1 iff bi = 0 for 1 ≤ i ≤ n

and for any 1 ≤ i < n∶ 3 ∣ ai + an. Consequently, these monomials are generated by:

x31, x
3
2, … , x3n, x1x2… xn−1x

2
n, x

2
1x
2
2… x2n−1xn.

Now let z ∶= x1x2… xn−1
xn

and observe that

ℂ(Z6,n) = ℂ(y1, y2,… , yn, z),

since

x3i = y
2
i + yi, x1x2… xn−1x

2
n = z(y

2
n + yn) and x21x

2
2… x2n−1xn = z

2(y2n + yn).

Moreover we have the following relation

z3 =
(

x1x2… xn−1
xn

)3

=
(y21 + y1)(y

2
2 + y2)… (y2n−1 + yn−1)
y2n + yn

or equivalently
(y21 + y1)(y

2
2 + y2) ⋅… ⋅ (y2n−1 + yn−1) = z

3(y2n + yn).

Taking � ∶= yn
yn−1

, we get the equation

(y21 + y1)(y
2
2 + y2) ⋅… ⋅ (y2n−2 + yn−2)(yn−1 + 1) = z

3�(�yn−1 + 1),

from which we can compute yn−1 and yn = �yn−1 as rational functions in y1, y2, … , yn−2,

z, �. Hence the variety Z6,n is rational.
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In that case we use elliptic curve with the same equation as in the case of the action by
ℤ∕3ℤ. Take a prime number p ≡ 2 (mod 3) and the supersingular elliptic curve E6 over a
field k, such that �6 ∈ k and char k = p, defined by equation y2 + y = x3, and with the �6
action �6∶ (x, y)↦ (�3x,−1 − y). The endomorphism ring of E6 may be represented as

End(E6) = ℤ⊕ ℤF ⊕ ℤ�6 ⊕ ℤ
(1 + F )(2 − �6)

3
,

where F is a Frobenius morphism of E6, with the relation F�6 = �56F .

Theorem 4.3.7. The Calabi-Yau manifold E
n
6
/

J5

:
= X6,n is a Zariski manifold.

Proof. The commutativity of the diagram

En
6 En

6

En
6 En

6

↻

J1

1 ×… × 1 × F 1 ×… × 1 × F

J5

leads to purely inseparable rational map En
6
/

J1
⟶

En
6
/

J5
of degree p. Since En

6
/

J1
by

4.3.2 is a rational variety, the theorem follows.

Directly from the previous sections the following corollaries hold:

Corollary 4.3.8. In any odd characteristic p ≢ 1 (mod 12) there exists a Zariski Calabi-Yau
manifold of arbitrary dimension.

Corollary 4.3.9. In any odd characteristic p ≢ 1 (mod 12) there exists a unirational Calabi-
Yau manifold of arbitrary dimension.

Remark 4.3.10. According to our knowledge constructed varieties are the first example of
higher dimensional (at least 3) Calabi-Yau manifolds with Zariski property. However there
are unirational Calabi-Yau manifolds of arbitrary dimension in many positive characteristics
(in fact in characteristic 0, a Calabi-Yau variety cannot be unirational, cf. [MM86]) i.e.

• Hirokado’s construction of Calabi-Yau threefold obtained as a quotient of ℙ3 by a p-
closed rational vector field in characteristic p = 3 (see [Hir99]). In fact Hirokado’s
Calabi-Yau threefold is a non-liftable Calabi-Yau threefold in characteristic 3.
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• In papers [HIS07], [HIS08] authors adopted Schoen’s construction of Calabi-Yau three-
folds using elliptic surfaces ([Sch88]) to obtain unirational Calabi-Yau threefolds in
characteristic 3.

• Let Xr
m denotes Fermat variety of dimension r and degree m i.e. smooth hypersurface

in ℙr+1 given by the following equation:

Xm
0 +X

m
1 +…+Xm

r+1 = 0.

In [SK79] it is proven that if pl ≡ −1 (mod m) for some integer l, and for any even
positive integer r, the Fermat variety Xr

m is unirational in characteristic p.
Therefore, we may take arbitrary even positive integer m, put r ∶= m− 2 and consider
prime p which is −1 (mod m) (there are infinitely many such primes). Then Xm

m−2 is
unirational Calabi-Yau variety in characteristic p. See also [Shi92] for a construction of
unirational complete intersections of Fermat’s hypersurfaces in positive characteristic.
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Chapter 5

Calabi-Yau varieties of
Borcea-Voisin type

One of the first important achievements in the theory of Calabi-Yau threefolds and particu-
larly in Mirror Symmetry Conjecture, was the construction given independently by C. Borcea
([Bor97]) and C. Voisin ([Voi93]). They constructed families of Calabi-Yau threefolds using
a non-symplectic involutions of K3 surfaces and elliptic curves. Moreover C. Voisin gave a
construction of explicit mirror maps.

The Borcea-Voisin construction is actually similar to the one given by C. Vafa and E.Wit-
ten in [VW95]. They divided a product of three tori by a group of automorphisms preserving
the volume form. This approach gave rise to abstract physical models studied by L. Dixon,
J. Harvey, C. Vafa, E. Witten in [Dix+85; Dix+86]. Similar constructions i.e. quotients of
products of tori by a finite group were classified by J. Dillies, R. Donagi, A. E. Faraggi an K.
Wendland in [Dil07; DF04; DW09].

There are many generalizations of the above constructions. The first idea is to allow au-
tomorphisms of higher order. In [Roh10] Rohde constructed Calabi-Yau threefolds by taking
a quotient of a product of an elliptic curve and a K3 surface by an automorphism of order 3,
fixing only points or rational curves on theK3 surface. A.Molnar in his PhD thesis ([Mol15])
found another groups acting on a product of three elliptic curves and studied modularity of
the resulting quotients. S. Cynk and K. Hulek study examples of threefolds (and higher di-
mensional varieties) using involutions and higher order automorphisms (see [CH07]); they
also proved their modularity. Finally [CG16] A. Cattaneo and A. Garbagnati used purely non-
symplectic automorphisms of order 3, 4 and 6 to generalized the Borcea-Voisin construction.

Another possibility is to take a quotient of a product of twoK3 surfaces by a finite group.
Such fourfolds were studied by J. Dillies in [Dil12a]. F. Reidegald divided S × ℙ1, where
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S is a K3 surface, by a cyclic group of order 3. He also found a desingularization of such
quotients (see [Rei15]).

Our attempt to generalize Borcea-Voisin construction is to allow more elliptic curves as
a factor and make construction similar to Cynk-Hulek construction in chapter 2. At the same
time we increase the dimension of the resulting variety.

In this chapter we briefly recall the original Borcea-Voisin construction and its gener-
alization given by A. Cattaneo and A. Garbagnati. Then we shall give higher dimensional
generalisation and compute Hodge numbers of resulting varieties using the orbifold coho-
mology formula and the stringy Euler characteristic.

§ 5.1 Borcea-Voisin construction

One of the many reasons behind the interest in non-symplectic automorphisms of K3 sur-
faces is the mirror symmetry construction of C. Borcea ([Bor97]) and C. Voisin ([Voi93]).
They independently constructed a family of Calabi-Yau threefolds using a non-symplectic
involutions of K3 surfaces and elliptic curves. Moreover C. Voisin gave a construction of
explicit mirror maps.

Theorem 5.1.1 ([Bor97; Voi93]). Let E be an elliptic curve with an involution �E which

does not preserve !E . Let S be a K3 surface with a non-symplectic involution �S . Then any

crepant resolution of the variety E × S
/

�E × �S
is a Calabi-Yau manifold with

ℎ1,1 = 11 + 5N −N ′ and ℎ2,1 = 11 + 5N ′ −N,

whereN is the number of curves in Fix(�S) andN ′ is the sum of their genera.

C. Borcea considered any two varieties (X, �X) and (Y , �Y ) of the Calabi-Yau type (i.e.
KX = KY = 0) with involutions �X and �Y and made the blow up of X × Y along Fix(�X) ×
Fix(�Y ) which produced a crepant desingularisation of X × Y /

�X × �Y
.

From Nikulin’s classification ([Nik87]) it follows that for any K3 surface S with non-
symplectic involution �S which fixes N curves with sum of genera equal to N ′, there exists
a complementary surface S ′ and its non-symplectic involution �′S withN ′ fixed curves with
sum of genera equal toN. Thus we have the following corollary:

80



Corollary 5.1.2. The pair E × S
/

�E × �S

:
, E × S

′/

�E × �S′
:

is a mirror pair i.e.

ℎ1,1
(

E × S/
�E × �S

: )

= ℎ2,1
(

E × S ′/
�E × �S′
: )

and

ℎ2,1
(

E × S/
�E × �S

: )

= ℎ1,1
(

E × S ′/
�E × �S′
: )

.

Y. Goto, R. Livné, N. Yui in [GLY13] computed zeta function of the Borcea-Voisin three-
fold:
Theorem 5.1.3 ([GLY13]). The Hasse-Weil zeta function of S × E

/

�E × �S

:
has the follow-

ing form

�

(

S × E/
�E × �S

:
, s

)

=
L(E ⊗ �, s)L(E ⊗ �, s)L(J (Cg), s − 1)4

�(ℚ, s)L2(X, s)L2(X, s − 1)�(ℚ, s − 3)
.

Moreover if all algebraic cycles inNS(S)�S are defined over ℚ, then

L2(X, s) = �(ℚ, s − 1)11+5N−N
′ ,

otherwise

L2(X, s) = �(ℚ, s − 1)1+t+4(N+1)L(�′, s),

where t < 11 + 5N −N ′ = ℎ1,1 is the number of algebraic cycles in NS(S)�S defined over

ℚ, �′ is an irreducible representation of dimension 11+ 5N −N ′ − t and L(�′, s) is its Artin

L-function.

Here (S, �S) is K3 surfaces from the family satisfying 2.6.4.

§ 5.2 Generalized Borcea-Voisin construction

In [CG16] A. Cattaneo and A. Garbagnati generalized the Borcea-Voisin construction allow-
ing a non-symplectic automorphisms of a K3 surfaces of higher degrees i.e. 3, 4 and 6.
Theorem 5.2.1 ([CG16]). Let Sd be a K3 surface admitting a purely non-symplectic auto-

morphism �S of order d = 3, 4, 6. LetEd be an elliptic curve admitting an automorphism �Ed
of order d. Then Sd × Ed

/

�Sd × �
n−1
Ed
, is a singular variety which admits a crepant resolu-

tion of singularities Sd × Ed
/

�Sd × �
d−1
Ed

:
. In particular Sd × Ed

/

�Sd × �
d−1
Ed

:
is a Calabi-Yau

threefold.
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Proof. Since Sd and Ed are Calabi-Yau varieties, the product Sd × Ed has trivial canonical
bundle and a generator ofH3,0(S × E,ℂ) is !Sd ∧ !Ed .We have

�Sd × �
n−1
Ed
(!Sd ∧ !Ed ) = �d ⋅ �

d−1
d (!Sd ∧ !Ed ) = !Sd ∧ !Ed ,

hence by 2.1.21 there exists a crepant resolution of Sd × Ed/�Sd × �d−1Ed
.

Definition 5.2.2. A crepant resolution of Sd × Ed/�Sd × �d−1Ed
≃ Sd × Ed

/

ℤd
is called a

Calabi-Yau 3-fold of Borcea-Voisin type.

The authors gave a detailed crepant resolution and computed the Hodge numbers of the
resulting algebraic varieties. For all possible orders they computed the Hodge numbers of
these varieties and constructed elliptic fibrations on them. Their computations are quite tech-
nical and rely on a detailed study of crepant resolutions of threefolds. Main results of their
paper are the following theorems:

Order 3:

Theorem 5.2.3 ([CG16]). Suppose that Fix(�S3) consists of k curves together with a curve

with highest genus g(C) and n isolated points, then for any crepant resolution of the variety
S3 × E3

/

�S3 × �
2
E3

the following holds:

ℎ1,1 = r + 1 + 3n + 6k and ℎ2,1 = m − 1 + 6g(C).

Order 4:

Theorem 5.2.4 ([CG16]). Suppose Fix�2S4 is not a union of two elliptic curves, then for any

crepant resolution of variety S4 × E4
/

�S4 × �
3
E4

the following formulas hold

• If D is of the first type, then

ℎ1,1 = 1 + r + 7k + 3b + 2(n1 + n2) + 4a, and ℎ1,2 = m − 1 + 7g(D).

• If D is of the second type, then

ℎ1,1 = 1 + r + 7k + 3b + 2(n1 + n2) + 4a, and ℎ1,2 = m + 2g(D) −
n2
2
,

where
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r ∶= dimH2(S,ℂ)�S ,

m ∶= dimH2(S,ℂ)� i6 for 1 ≤ i ≤ 5,

N ∶= number of curves which are fixed by
�2S ,

k ∶= number of curves which are fixed by
�S (curves of the first type),

b ∶= number of curves which are fixed by
�2S and are invariant by �S (curves of
the second type),

a ∶= number of pairs (A,A′) of curves
which are fixed by �2S and �S(A) =
A′ (curves of the third type),

D ∶= the curve of the highest genus in
S�2S ,

n1 ∶= number of points which are fixed
by �S not laying on the curve D,

n2 ∶= number of points which are fixed
by �S laying on the curve D.

Order 6:
Theorem 5.2.5 ([CG16]). For any crepant resolution of variety S6 × E6

/

�S6 × �
5
E6

the fol-

lowing formulas hold

ℎ1,1 = r + 1 + 2l + 2N − 2b + 4k − 2a + 3n′ + 3p(2,5) + p(3,4),

ℎ1,2 =

⎧

⎪

⎨

⎪

⎩

m − 1 + 8g(D) + g(F2) + g(F2∕
S) if g(D) ≥ 1
m − 1 + 2g(G) + 2g(G∕
S) + g(F1) + g(F1∕
S)
+g(F2) + g(F2∕
S) if g(D) = 0

where

r ∶= dimH2(S,ℂ)
S ,

m ∶= dimH2(S,ℂ)� i6 for 1 ≤ i ≤ 5,

l ∶= number of curves fixed by 
S ,

k ∶= number of curves fixed by 
2S ,

N ∶= number of curves fixed by 
3S ,

p(2,5) + p(3,4) ∶= number of isolated points fixed by

S of type (2, 5) and (3, 4) i.e. the
action of 
S near the point lin-
earises to respectively diag(�26 , �

5
6 ) and

diag(�36 , �
4
6 ),

n ∶= number of isolated points fixed by 
2S ,

2n′ ∶= number of isolated points fixed by 
2S
and switched by 
S ,

F1, F2 ∶= the curves with the highest genus
in the fixed locus of 
3S .

a ∶= number of triples (A,A′, A′′) of
curves fixed by 
3S such that

S(A) = A′ and 
S(A′) = A′′,

b ∶= number of pairs (B,B′) of curves
fixed by 
2S such that 
S(B) = B′,

D ∶= the curve with the highest genus in
the fixed locus of 
S ,

G ∶= the curve with the highest genus in
the fixed locus of 
2S ,

In [Bur18] we gave shorter proofs of formulas of Hodge numbers using orbifold coho-
mology 2.2.1 and orbifold Euler characteristic 2.4.1. We also got new relation among above
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invariants by comparing Euler characteristic with a stringy Euler characteristic (see section
2.4).

§ 5.3 Higher dimensional Calabi-Yau varieties of
Borcea-Voisin type

Take d ∈ {2, 3, 4, 6} and let Sd be a K3-surface with non-symplectic automorphism 
d of
order d. Moreover, let Ed be an elliptic curves admitting automorphisms �d of order d. By
[Sil09] no other value of d can be attend by order of an automorphisms of elliptic curve.

The following group

Gd,n ∶= {(m1, m2,… , mn) ∈ ℤn
d ∶ m1 + m2 +…+ mn = 0} ≃ ℤn−1

d

acts on Sd × En−1
d by (


d
)m1 on the first factor and �mid on the i-th factor, where 2 ≤ i ≤ n.

Moreover Gd,n preserves canonical bundle of Sd × En−1
d .

Theorem 5.3.1. Under the above assumptions there exists crepant resolution Yd,n of the quo-
tient variety Sd × E

n−1
d

/

Gd,n
. In particular Yd,n is (n + 1)-dimensional Calabi-Yau variety.

Proof. For d = 2, theorem follows from Proposition 2.1 of [CH07] and induction.
Taking X1 ∶= Ed and X2 ∶= Sd in Propositions 3.1, 4.1 of [CH07] for d = 3 and 4,

respectively and 3.2.1 for d = 6 we see that all needed assumptions are satisfied. Therefore
there exists a crepant resolution Sd × Ed/ℤd

:
of Sd × Ed/ℤd

and non-symplectic automor-
phism �2 on Sd × Ed

/

ℤd

:
of order d which has the same properties as 
d .Hence by induction

we are done.

Definition 5.3.2. We call the resulting variety Yd,n an (n+ 1)-dimensional Calabi-Yau mani-
fold of Borcea-Voisin type.

Remark 5.3.3. For n = 2 our construction coincides with generalised Calabi-Yau threefolds
of Borcea-Voisin type given by [CG16]. A. Molnar in his PhD ([Mol15]) studied the above
construction for n = 3.

5.3.1 Order 6

We shall keep the following notation introduced in [CG16]:
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S6 –K3 surfaces with a non-symplectic au-
tomorphism 
6∶ S6 → S6 of order 6
E6 – elliptic curve with the Weierstrass
equation y2 = x3 + 1, and automorphism
�6(x, y) = (�26x,−y), where �6 denotes a
fixed 6-th root of unity satisfying �26 = �3,

r = dimH2(S6,ℂ)
6 ,
m = dimH2(S6,ℂ)� i6 for i ∈ {1, 5},
� = dimH2(S6,ℂ)� i6 for i ∈ {2, 4},
� = dimH2(S6,ℂ)�36 ,

Fix(�6) = Fix(�36) = {f1}, Fix(�
2
6) = {f1, f2, f3}, where �6(f2) = f3, �6(f3) = f2 and

Fix(�36) = {f1, f4, f5, f6}, where �6(f4) = f5, �6(f5) = f6 and �6(f6) = f4,

Fix
(


6
)

= {K1,…Kl−1} ∪ {D} ∪ {P1,… , Pp(2,5)} ∪ {Q1,… , Qp(3,4)}, where

– the set {K1,…Kl−1}∪{D} consists of curves which are fixed by 
6 together with
the curve D of maximal genus g(D), in fact Ki are rational,

– {P1,… , Pp(2,5)} is the set of points such that linearisation of 
6 near the fixed point
is represented by the diagonal matrix diag(�26 , �56 ),

– {Q1,… , Qp(3,4)} is the set of points such that linearisation of 
6 near the fixed point
is represented by the diagonal matrix diag(�36 , �46 ),

Fix
(


26
)

= {L1,… , Lk−2b−1} ∪ {G} ∪ {(A1, A′1),… , (Ab, A′b)} ∪ {(R1, R
′
1),… , (Rn′ ,

R′n′)} ∪ {P1,… , Pp(2,5)}, where

– the set {L1,…Lk−2b−1} ∪ {G} consists of curves which are fixed by 
26 together
with the curve G of maximal genus g(G), in fact Li are rational,

– {(A1, A′1),… , (Ab, A′b)} is the set of all pairs (Ai, A′i) of curves which are fixed by

26 and 
6(Ai) = A′i (curves of the third type),

– {(R1, R′1),… , (Rn′ , R′n′)} is the set of pairs of points fixed by 
26 and such that

6(Ri) = R′i,

Fix
(


36
)

= {(M1,M ′
1,M

′′
1 ),… , (Ma,M ′

a,M
′′
a )}∪{T1,… , TN−3a−2}∪{F1, F2}, where

– the set {(M1,M ′
1,M

′′
1 ),… , (Ma,M ′

a,M
′′
a )} consists of curves which are fixed by


36 and such that 
6(Mi) =M ′
i , 
6(M

′
i ) =M

′′
i and 
6(M ′′

i ) =Mi,

– the set {T1,… , TN−3a−2} ∪ {F1, F2} consists of curves fixed by 
6 (and so 
36 ),
together with curves F1 and F2 of maximal genera g(F1) and g(F2), respectively.
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H i,j(S6,ℂ)
6

1

0

0

0

r

0

0

0

1

H i,j(S6,ℂ)�6

0

0

1

0

m− 1

0

0

0

0

H i,j(S6,ℂ)�26

0

0

0

0

α

0

0

0

0

According to the method presented in 2.3 we need to find FS6,k,j(X, Y ) for 0 ≤ k, j5. Let
us start with a description of the decomposition of the Hodge diamonds by the eigenspaces
of the action of 
∗6 onH∗(S6,ℂ). Hodge diamonds of eigenspaces have the following shape:

H i,j(S6,ℂ)�36

0

0

0

0

β

0

0

0

0

H i,j(S6,ℂ)�46

0

0

0

0

α

0

0

0

0

H i,j(S6,ℂ)�56

0

0

0

0

m− 1

0

1

0

0

Table 5.1: Hodge diamonds of eigenspaces the action of 
∗6

Therefore

�S6,0 =
(

(XY )2 + r ⋅XY + 1, X2 + (m − 1) ⋅XY , � ⋅XY , � ⋅XY , � ⋅XY , Y 2 + (m − 1) ⋅XY
)

.

Fixed locus Fix(
6) consists of l − 1 rational curves, one curve of maximal genus g(D)
and p(2,5) + p(3,4) isolated points. The description of that loci in terms of Hodge diamonds is
the following:

(l − 1) ×
1

0 0
1

⏟⏟⏟
rational curve

+
1

g(D) g(D)
1

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
genus g(D) curve D

+ p(3,4) + p(2,5)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
isolated points

Locally the action of 
6 on S6 along a fixed curve can be diagonalised to a matrix

⎛

⎜

⎜

⎝

1 0 0
0 �6 0
0 0 �56

⎞

⎟

⎟

⎠

,
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with age equal to 1. In the fixed point of type (2, 5) and (3, 4) we get respectively matrices
⎛

⎜

⎜

⎝

�26 0 0
0 �56 0
0 0 �56

⎞

⎟

⎟

⎠

and
⎛

⎜

⎜

⎝

�36 0 0
0 �46 0
0 0 �56

⎞

⎟

⎟

⎠

,

with ages 2. Therefore in the case of points, we must multiply Poincaré polynomials of
isolated points (i.e. p(3,4) + p(2,5)) by XY . Summarizing we get

�S6,1 =
(

l + p(2,5) ⋅XY + p(3,4) ⋅XY + g(D) ⋅ (X + Y ) + l ⋅XY , 0, 0, 0, 0
)

.

Since Fix(
6) = Fix(
56 ) and the fixed points have age equal to 1, we see that

�S6,5 =
(

l + p(2,5) + p(3,4) + g(D) ⋅ (X + Y ) + l ⋅XY , 0, 0, 0, 0
)

.

In order to compute �S6,2 let us start with Hodge theoretical description of a components
of fixed loci of 
26 ∶

(k − 1) ×
1

0 0
1

⏟⏟⏟
rational curve

+
1

g(G) g(G)
1

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
genus g(G) curve G

+ 2n′ + p(2,5)
⏟⏞⏞⏟⏞⏞⏟
isolated points

Moreover b pairs of curves (Ai, A′i) are permuted by 
6, therefore k − 2b − 1 rational curves
are fixed by 
6, one curve of genus g(G) is fixed by 
6 and remaining 2b curves form 2-cycles.
These gives contribution

k − b + g
(

G/

6

)

(X + Y ) + (k − b) ⋅XY

to the Poincaré polynomial FS6,2,0(X, Y ) and the contribution equal to

b +
(

g(G) − g
(

G/

6

))

⋅ (X + Y ) + b ⋅XY

to the Poincaré polynomial FS6,2,3(X, Y ).
Note that fixed point of 
26 have age 2 and n′ pairs of them are permuted by 
6. There-

fore, points give contribution (n′ + p(2,5)) ⋅XY to FS6,2,0(X, Y ) and contribution n′ ⋅ (XY ) to
FS6,2,3(X, Y ). Finally

�S6,2 =
(

k − b + n′ ⋅XY + p(2,5) ⋅XY + g
(

G/

6

)

(X + Y ) + (k − b) ⋅XY , 0, 0,

b + n′ ⋅XY +
(

g(G) − g
(

G/

6

))

⋅ (X + Y ) + b ⋅XY , 0
)

.
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Since Fix(
26 ) = Fix(
46 ) and the fixed points have age equal to 1 we have:

�S6,4 =
(

k − b + n′ + p(2,5) + g
(

G/

6

)

(X + Y ) + (k − b) ⋅XY , 0, 0,

b + n′ +
(

g(G) − g
(

G/

6

))

⋅ (X + Y ) + b ⋅XY , 0
)

.

The fixed point locus of 
36 consists ofN−2 fixed rational curves and 2 curves F1, F2 with
highest genus g(F1) and g(F2), respectively. Hodge diamond of that loci has the following
description

(N − 2) ×
1

0 0
1

⏟⏟⏟
rational curve

+
1

g(F1) g(F1)
1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
genus g(F1) curve F1

+
1

g(F2) g(F2)
1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
genus g(F2) curve F2

There are a triplets of rational curves which form 3-cycle under 
6 action, therefore

�S6,3 =
(

N − 2a +
(

g
(

F1
/


6

)

+ g
(

F2
/


6

))

⋅ (X + Y ) + (N − 2a) ⋅XY , 0,

a + 1
2

(

g(F1) + g(F2) − g
(

F1
/


6

)

− g
(

F2
/


6

))

(X + Y ) + a ⋅XY , 0,

a + 1
2

(

g(F1) + g(F2) − g
(

F1
/


6

)

− g
(

F2
/


6

))

(X + Y ) + a ⋅XY , 0
)

.

From 2.3 and tables 5.2, 5.3 get Poincaré polynomial of Y6,n ∶

5
∑

j=0

(

FS6,0,j +
6
√

XY FS6,1,j +
6
√

(XY )2FS6,2,j +
6
√

(XY )3FS6,3,j +
6
√

(XY )4FS6,4,j +
6
√

(XY )5FS6,5,j

)

×

×

(

FE,0,j +
6
√

XY FE6,1,j +
6
√

(XY )2FE6,2,j +
6
√

(XY )3FE6,3,j +
6
√

(XY )4FE6,4,j +
6
√

(XY )5FE6,5,j

)n−1

=

=

(

(XY )2 + r ⋅XY + 1 + 6
√

XY ⋅
(

l + p(2,5) ⋅XY + p(3,4) ⋅XY + g(D) ⋅ (X + Y ) + l ⋅XY
)

+

+ 6
√

(XY )2 ⋅
(

k − b + n′ ⋅XY + p(2,5) ⋅XY + g
(

G∕�S66
)

(X + Y ) + (k − b) ⋅XY
)

+

+ 6
√

(XY )3 ⋅
(

N − 2a +
(

g
(

F1
/


6

)

+ g
(

F2
/


6

))

⋅ (X + Y ) + (N − 2a) ⋅XY
)

+

+ 6
√

(XY )4 ⋅
(

k − b + n′ + p(2,5) + g
(

G/

6

)

(X + Y ) + (k − b) ⋅XY
)

+

+ 6
√

(XY )5 ⋅
(

l + p(2,5) + p(3,4) + g(D) ⋅ (X + Y ) + l ⋅XY
)

)

⋅

⋅
(

1 +XY + 6
√

XY + 2 6
√

(XY )2 + 2 6
√

(XY )3 + 2 6
√

(XY )4 + 6
√

(XY )5
)n−1

+
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k
j

0
1

2
3

4
5

0
(X
Y
)2
+
r⋅
X
Y
+
1

X
2
+
(m
−
1)
⋅X

Y
�
⋅X

Y
�
⋅X

Y
�
⋅X

Y
Y
2
+
(m
−
1)
⋅X

Y

1
l
+
p (
2,
5)
⋅X

Y
+
p (
3,
4)
⋅X

Y
+

+
g(
D
)⋅
(X

+
Y
)+

l
⋅X

Y
0

0
0

0
0

2
k
−
b
+
n′
⋅X

Y
+
p (
2,
5)
⋅X

Y
+

+
g
(

G
/


 6

)

(X
+
Y
)+

(k
−
b)
⋅X

Y
0

0
b
+
n′
⋅X

Y
+
(

g(
G
)−

g
(

G
/


 6

)
)

⋅

⋅(
X
+
Y
)+

b
⋅X

Y
0

0

3
N
−
2a
+
(

g
(

F 1
/


 6

)

+
g
(

F 2
/


 6

)
)

⋅

⋅(
X
+
Y
)+

(N
−
2a
)⋅
X
Y

0
a
+
1 2(

g(
F 1
)+

g(
F 2
)−

g
(

F 1
/


 6

)

−

−
g
(

F 2
/


 6

)
)

(X
+
Y
)+

a
⋅X

Y
0

a
+
1 2(

g(
F 1
)+

g(
F 2
)−

g
(

F 1
/


 6

)

−

−
g
(

F 2
/


 6

)
)

(X
+
Y
)+

a
⋅X

Y
0

4
k
−
b
+
n′
+
p (
2,
5)
+
g
(

G
/


 6

)

(X
+
Y
)+

+
(k
−
b)
⋅X

Y
0

0
b
+
n′
+
(

g(
G
)−

g
(

G
/


 6

)
)

⋅

⋅(
X
+
Y
)+

b
⋅X

Y
0

0

5
l
+
p (
2,
5)
+
p (
3,
4)
+
g(
D
)⋅
(X

+
Y
)+

+
l
⋅X

Y
0

0
0

0
0

Ta
ble

5.2
:F

S
6,
k,
j(
X
,Y
)

k
j

0
1

2
3

4
5

0
1
+
X
Y

X
0

0
0

Y

1
1

0
0

0
0

0
2

2
0

0
1

0
0

3
2

0
1

0
1

0
4

2
0

0
1

0
0

5
1

0
0

0
0

0

Ta
ble

5.3
:F

E
6,
k,
j(
X
,Y
)
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+
(

X2 + (m − 1) ⋅XY
)

⋅Xn−1 +

(

� ⋅XY + 6
√

(XY )3 ⋅
(

a + 1
2

(

g(F1) + g(F2)−

− g
(

F1
/


6

)

− g
(

F2
/


6

))

⋅ (X + Y ) + a ⋅XY
)

)

⋅
(

6
√

(XY )3
)n−1

+

+

(

� ⋅XY + 6
√

(XY )2 ⋅
(

b + n′ ⋅XY +
(

g(G) − g
(

G/

6

))

⋅ (X + Y ) + b ⋅XY
)

+

+ 6
√

(XY )4 ⋅
(

b + n′ +
(

g(G) − g
(

G/

6

))

⋅ (X + Y ) + b ⋅XY
)

)

⋅
(

6
√

(XY )2 + 6
√

(XY )4
)n−1

+

+

(

� ⋅XY + 6
√

(XY )3 ⋅
(

a + 1
2

(

g(F1) + g(F2) − g
(

F1
/


6

)

− g
(

F2
/


6

))

⋅ (X + Y )+

+ a ⋅XY
)

)

⋅
(

6
√

(XY )3
)n−1

+
(

Y 2 + (m − 1) ⋅XY
)

⋅ Y n−1.

From this formula we can compute Euler characteristic by evaluating the above formula
at 6-th roots of unity. Therefore we can compute this as a sum of six geometric sequences,
hence we expect that there exists recurrence of degree at most 6. In fact two of them coincides
and finally we obtain recurrence of order 4.

Corollary 5.3.4. The Euler characteristic of Y6,n is equal to an−1, where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

an = 12an−1 − 19an−2 − 12an−3 + 20an−4,
a0 = e(Y6,1) = 24,
a1 = e(Y6,2) = 4 + 2r − 2m + 4l + 6p(2,5) + 2p(3,4) − 4g(D) + 8k − 4b + 6w−

− 4g
(

G/

6

)

− 4g(G) + 4N − 4a − 2g
(

F1
/


6

)

− 2g
(

F2
/


6

)

− 2g(F1) − 2g(F2),
a2 = e(Y6,3) = 80 + 16r − 2m − 2� + 64l + 66p(2,5) + 32p(3,4) − 64g(D) + 68k − 64b + 36w−

− 64g
(

G/

6

)

− 4g(G) + 32N − 64a − 32g
(

F1
/


6

)

− 32g
(

F2
/


6

)

,
a3 = e(Y6,4) = 380 + 166r − 6m − 4� + 660l + 666p(2,5) + 330p(3,4) − 660g(D) + 672k − 660b+

+ 342w − 660g
(

G/

6

)

− 12g(G) + 332N − 660a − 330g
(

F1
/


6

)

− 330g
(

F2
/


6

)

−

− 2g(F1) − 2g(F2).

Therefore

e(Y6,n) =
1
3

(

46 − r + 2m − � + 2l + p(3,4) − 2g(D) − 2k − 2b − 3w − 2g
(

G/

6

)

+ 4g(G) − 2N − 2a−

− g
(

F1
/


6

)

− g
(

F2
/


6

)

+ 3g(F1) + 3g(F2)

)

⋅ (−1)n−1−
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− 1
3

(

− 23 + r
2
+ 2m + 2� + 2l + p(3,4) − 2g(D) − 2k − 2b − 3w − 2g

(

G/

6

)

+ 4g(G) +N−

− 2a − g
(

F1
/


6

)

− g
(

F2
/


6

)

)

⋅ 2n−1+

+ 1
3

(

2 + r + 3� − 2l − 2p(2,5) − p(3,4) + 2g(D) − 2k + 2b −w + 2g
(

G/

6

)

+ 2N + 2a+

+ g
(

F1
/


6

)

+ g
(

F2
/


6

)

− 3g(F1) − 3g(F2)

)

−

− 1
3

(

− r
2
− 2l − 2p(2,5) − p(3,4) + 2g(D) − 2k + 2b −w + 2g

(

G/

6

)

−N + 2a+

+ g
(

F1
/


6

)

+ g
(

F2
/


6

)

− 1

)

.

5.3.2 Relations

There are many relations among numerical invariants attached to S6. Some of them were
pointed out in [CG16] and [Bur18]. Most of them follow from adopted notation 5.3.1 and
Riemann-Hurwitz formula (see [CG16]). In [Bur18] we got new relation by comparing
Stringy Euler Characteristic of Y6,2 with the Euler characteristic computed from orbifold
Hodge numbers.

In the present section we shall use the same idea as in [Bur18], moreover we shall examine
another formulas i.e. Hurwitz formula and holomorphic and topological Lefschetz numbers.

Riemann-Hurwitz formula

Some isolated fixed points of 
6 lie on curves in Fix (
26
) and all of them are of type (3, 4).

The canonical map �G ∶ G → G/

6

can be considered as a covering of G of degree two
ramified at

p(3,4) − 2 ⋅ (k − 2b − l − 1)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
number of rational curvesinvariant by 
6

points lying on G, which have ramification index 2, therefore by the Reimann-Hurwitz for-
mula we get:

2 − 2g(G) = 2
(

2 − 2g
(

G/
�6

))

−
(

p(3,4) − 2(k − 2b − l − 1)
)

,
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thus

(5.3.1) g
(

G/
�6

)

= 1
4
(

2g(G) − p(3,4) + 2k − 4b − 2l
)

.

Assuming g(D) = 0. Let F ∶= F1 ∪ F2. The canonical map �F ∶ F → F /

6

is triple
covering of F , ramified at

p(3,4) + p(2,5) − 2 ⋅ (N − 3a − 1 − l)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
number of rational curvesinvariant by 
6

points, with ramification index equal to 3, so

2 − 2g(F1) + 2 − 2g(F2) = 3
(

2 − 2g
(

F1
/


6

)

+ 2 − 2g
(

F2
/


6

))

−

− 2(p(3,4) + p(2,5) − 2(N − 3a − 1 − l)).

Consequently

g
(

F1
/


6

)

+ g
(

F2
/


6

)

= 1
6
(

2g(F1) + 2g(F2) − 2p(2,5) − 2p(3,4) + 4N − 12a − 4l
)

.

(5.3.2)

Topological Lefschetz number

Using 2.5 and diagrams 5.1 we deduce:

top
(


6
)

= 1+1+r+�6 ⋅(1+m−1)+�26 ⋅�+�
3
6 ⋅�+�

4
6 ⋅�+�

5
6 ⋅(m−1+1) = 2+r+m−�−�,

therefore
2 + r + m − � − � = e

(

Fix
(


6
))

= 2l − 2g(D) + p(3,4) + p(2,5),

which gives relation

(5.3.3) 2 + r + m − � − � − 2l + 2g(D) − p(3,4) − p(2,5) = 0.

And similarly

top
(


26
)

= (1 + r + � + 1) + �3(1 + m − 1 + �) + �23 (� + m − 1 + 1) =

= (1 + r + � + 1) − 1 − m − � + 1 = −� + � + r + 2 − m,

so
−� + � + r + 2 − m = e

(

Fix
(


26
))

= 2k − 2g(G),
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giving relation

(5.3.4) − � + � + r + 2 − m − 2k + 2g(G) = 0.

In the same way:

top
(


36
)

= (1 + r + 2� + 1) − (1 + � + 2m − 2 + 1) = 2 + r + 2� − � − 2m,

so
2 + r + 2� − � − 2m = e

(

Fix
(


36
))

= 2N − 2g(F1) − 2g(F2),

giving relation

(5.3.5) 2 + r + 2� − � − 2m − 2N + 2g(F1) + 2g(F2) = 0.

Holomorphic Lefschetz number

According to the section 2.5 we shall deduce another relations using holomorphic Lefschetz
formulas.

On the one hand

hol
(


6
)

=
2
∑

i=0
(−1)i tr

((


6
)∗
|H i(S,S)

)

= 1 + �56 .

Let as compute numbers a(P ) and b(C) from theorem 2.5.3:

a(Pj) =
1

det
(

1 − 
∗6 |Pj

) = 1

det
((

1 0
0 1

)

−
(

�36 0
0 �46

)) = 1
(

1 − �36
) (

1 − �46
) ,

a(Qj) =
1

det
(

1 −
(

�S66
)∗

|Qj

) = 1

det
((

1 0
0 1

)

−
(

�26 0
0 �56

)) = 1
(

1 − �26
) (

1 − �56
)

and similarly

b(Ki) =
1 − g(Ki)
1 − �6

−
�6 ⋅K2

i
(

1 − �6
)2
= 1
1 − �6

−
�6 ⋅ (2g(Ki) − 2)

(

1 − �6
)2

= 1
1 − �6

−
−2 ⋅ �6
(

1 − �6
)2
=

1 + �6
(

1 − �6
)2
,

b(D) =
1 − g(D)
1 − �6

−
�6 ⋅D2

(

1 − �6
)2
=
1 − g(D)
1 − �6

−
�6 ⋅ (2 − 2g(D))

(

1 − �6
)2

=
(1 + �6) ⋅ (1 − g(D))

(

1 − �6
)2

.
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Therefore
ℎ

(


6
)

=
l−1
∑

i=1
b(Ki) + b(D) +

p(2,5)
∑

j=1
a(Pj) +

p(3,4)
∑

j=1
a(Qj) =

= (l − 1) ⋅
1 + �6

(

1 − �6
)2
+
(1 + �6) ⋅ (1 − g(D))

(

1 − �6
)2

+
p(3,4)

(

1 − �36
) (

1 − �46
) +

p(2,5)
(

1 − �26
) (

1 − �56
)

which is equivalent to
1+�56 = (l−1) ⋅

1 + �6
(

1 − �6
)2
+
(1 + �6) ⋅ (1 − g(D))

(

1 − �6
)2

+
p(3,4)

(

1 − �36
) (

1 − �46
) +

p(2,5)
(

1 − �26
) (

1 − �56
) .

Multiplying this equality by denominators and after some manipulations we get the following
relation:
(5.3.6) 3 + 3l − 3g(D) −

p(3,4)
2

− p(2,5) = 0,

which agrees with [Dil12b].

Stringy Euler Characteristic

Using stringy Euler characteristic (see section 2.4) for n = 1,… , 6 we have

es(Y6,n) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

24 for n = 1,
8l − 8g(D) + 8p(2,5) + 4p(3,4) + 8k − 8g(G) + 8n′ + 4N − 4g(F1) − 4g(F2) for n = 2,
96 + 128l − 128g(D) + 88p(2,5) + 64p(3,4) + 48k − 48g(G)+
+ 48n′ + 16N − 16g(F1) − 16g(F2)

for n = 3,
672 + 1320l − 1320g(D) + 888p(2,5) + 660p(3,4) + 456k − 456g(G) + 456n′+
+ 168N − 168g(F1) − 168g(F2)

for n = 4,
6720 + 13312l − 13312g(D) + 8888p(2,5) + 6656p(3,4) + 4464k+
+ 4464n′ − 4464g(G) + 1664N − 1664g(F1) − 1664g(F2)

for n = 5,
66720 + 133288l − 133288g(D) + 88888p(2,5) + 66644p(3,4) + 44488k+
+ 44488n′ − 44488g(G) + 16664N − 16664g(F1) − 16664g(F1)

for n = 6.
Comparing es(Y6,n) and 5.3.4 for n = 1…6 we obtain new relations:

(5.3.7) − 2� + 10 +N − r − g(F1) − g(F2) = 0

− m + 2 + r − 2l − p(2,5) − p(3,4) + 2g(D) − 2b −w − 2g
(

G/

6

)

+ 2g(G)(5.3.8)
− 2a − g

(

F1
/


6

)

− g
(

F2
/


6

)

+ g(F1) + g(F2) = 0.

− n′ − 3 + 3
2
⋅ r − 6l − 2p(2,5) − 3p(3,4) + 6g(D) + 2k − 6b − 6g

(

G/

6

)

+(5.3.9)
+ 4g(G) + 3

2
⋅N − 6a − 3g

(

F1
/


6

)

− 3g
(

F2
/


6

)

+ 3
2
⋅ g(F1) +

3
2
⋅ g(F2) = 0.

To summarize we obtained the following relations:
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Proposition 5.3.5. The following relation holds among parameters attached to S6 ∶

1) 0 = 2m + r + � + � − 20,

2) 0 = n − p(2,5) − 2n′,

3) 0 = 2 + r + m − � − � − 2l + 2g(D) − p(2,5) − p(3,4),

4) 0 = −� + � + r + 2 − m − 2k + 2g(G),

5) 0 = 2 + r + 2� − � − 2m − 2N + 2g(F1) + 2g(F2),

6) 0 = −2� + 10 +N − r − g(F1) − g(F2),

7) 0 = 3 + 3l − 3g(D) −
p(3,4)
2

− p(2,5),

8) 0 = −g
(

G∕�S66
)

+ 1
4
(

2g(G) − p(3,4) + 2k − 4b − 2l
)

,

9) 0 = −g
(

F1∕�
S6
6

)

− g
(

F2∕�
S6
6

)

+ 1
6
(

2g(F1) + 2g(F2) − 2p(2,5) − 2p(3,4)+

+ 4N − 12a − 4l
)

, (assuming g(D) = 0),
10) 0 = −m + 2 + r − 2l − p(2,5) − p(3,4) + 2g(D) − 2b −w − 2g

(

G/

6

)

+ 2g(G)

− 2a − g
(

F1
/


6

)

− g
(

F2
/


6

)

+ g(F1) + g(F2),

11) 0 = −n′ − 3 + 3
2
⋅ r − 6l − 2p(2,5) − 3p(3,4) + 6g(D) + 2k − 6b − 6g

(

G/

6

)

+

+ 4g(G) + 3
2
⋅N − 6a − 3g

(

F1
/


6

)

− 3g
(

F2
/


6

)

+ 3
2
⋅ g(F1) +

3
2
⋅ g(F2).

5.3.3 Order 4

We shall keep the following notation coherent with [CG16]:
S4 –K3 surfaces with a non-symplectic au-
tomorphism 
4∶ S4 → S4 of order 4
E4 – elliptic curve with the Weierstrass
equation y2 = x3 + x, and automorphism
�4 is given by �4(x, y) = (−x, iy),

r = dimH2(S4,ℂ)
4 ,
m = dimH2(S4,ℂ)� i4 for i ∈ {1, 2},
� = dimH2(S4,ℂ)�24 ,

Fix(�4) = Fix(�34) = {f1, f2}, Fix(�24) = {f1, f2, f3, f4}, where �4(f3) = f4 and
�4(f4) = f3,

Fix
(


24
)

= L1 ∪L2 ∪…∪LN−b−2a−1 ∪{D}∪ {(A1, A′1), (A2, A
′
2),… , (Aa, A′a)} ∪ {B1,

B2,… , Bb}, where

– {(A1, A′1), (A2, A
′
2),… , (Aa, A′a)} is the set of all pairs (Ai, A′i) of curves which

are fixed by 
24 and 
4(Ai) = A′i,
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– {B1, B2,… , Bb} is the set of curves which are fixed by 
24 and are non-invariant
by 
4.

Fix
(


4
)

= {R1, R2,…Rk−1} ∪ {G} ∪ {P1, P2,… , Pn1} ∪ {Q1, Q2,… , Qn2}, where
– the set {R1, R2,…Rk−1} ∪ {G} contains of curves which are fixed by 
4 together
with the curve G of maximal genus g(G), curves Ri are rational,

– {P1, P2,… , Pn1} is the set of points which are fixed by 
4 not laying on the curve
D,

– {Q1, Q2,… , Qn2} is the set of points which are fixed by 
4 laying on the curveD.

From the following description of eigenspaces ofH∗,∗(S4,ℂ):
H i,j(S4,ℂ)

�
4

1

0

0

0

r

0

0

0

1

H i,j(S4,ℂ)�4

0

0

1

0

m− 1

0

0

0

0

H i,j(S4,ℂ)�24
0

0

0

0

22− r − 2m

0

0

0

0

H i,j(S4,ℂ)�34

0

0

0

0

m− 1

0

1

0

0

We have

�S4,0 =
(

(XY )2 + r ⋅XY + 1, X2 + (m− 1) ⋅XY , (22 − r− 2m) ⋅XY , Y 2 + (m− 1) ⋅XY
)

.

In the fixed locus of 
4 there are k− 1 rational curves and one curve G of maximal genus
g(G), and points with linearisation diag(1, �4) and diag(�24 , �34 ) (lying on D or not). In the
fixed points we get ages 2, therefore

�S4,1 =
(

k + (n1 + n2) ⋅XY + g(G) ⋅ (X + Y ) + k ⋅XY , 0, 0, 0
)

.

Similarly
�S4,3 =

(

k + (n1 + n2) + g(G) ⋅ (X + Y ) + k ⋅XY , 0, 0, 0
)

.

The fixed locus of 
24 consists ofN−b−2a−1 rational curves, one curveDwith maximal
genus g(D), a pairs of curves switched by 
4 and fixed curves non-invariant by 
4. Therefore

�S4,3 =
(

N−a+g
(

D/


4

)

⋅(X+Y )+(N−a)⋅XY , 0, a+
(

g(D) − g
(

D/


4

))

(X+Y )+a⋅XY
)

.

The following tables summaries above facts about FS4,k,j(X, Y ) and FE4,k,j(X, Y ):
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From 2.3 and tables 5.4, 5.5 we get Poincaré polynomial of Y4,n ∶
(

(XY )2 + r ⋅XY + 1 +
(

k + (n1 + n2) ⋅XY + g(G) ⋅ (X + Y ) + k ⋅XY
)

⋅
4
√

XY+

+
(

N − a + g
(

D/


4

)

⋅ (X + Y ) + (N − a) ⋅XY
)

⋅ 4
√

(XY )2 +
(

k + n1 + n2+

+ g(G) ⋅ (X + Y ) + k ⋅XY
)

⋅ 4
√

(XY )3
)

⋅
(

1 +XY + 2 4
√

XY + 3 4
√

(XY )3 + 2 4
√

(XY )3
)n−1

+

+
(

X2 + (m − 1) ⋅XY
)

⋅Xn−1 +
(

(22 − r − 2m) ⋅XY +
(

a +
(

g(D) − g
(

D/


4

))

(X + Y )+

+ a ⋅XY
)

⋅ 4
√

(XY )2
)

⋅
(

4
√

(XY )2
)n−1

+
(

Y 2 + (m − 1) ⋅XY
)

⋅ Y n−1.

Similarly as before we obtain the following corollary

Corollary 5.3.6. The Euler characteristic of Y4,n is equal to an−1, where

⎧

⎪

⎪

⎨

⎪

⎪

⎩

an = 9an−1 + an−2 − 9an−3,
a0 = e(Y4,1) = 24,
a1 = e(Y4,2) = 2r + 8k + 4n1 + 4n2 + 6N − 4a + 4 − 14g(D) − 2m,
a2 = e(Y4,3) = 64 + 20r + 80k + 40n1 + 40n2 − 120g(D) + 40N − 40a.

Therefore

e(Y4,n) =
(

−N + g(D) + m + 12
)

⋅ (−1)n−1 − 1
2

(

−N + a + 3g(D) − 2k − n1 − n2 −
r
2
− 1

)

⋅ 9n−1+

+ 1
2

(

N + a + g(D) − 2k − 2m − n1 − n2 −
r
2
+ 23

)

.
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k
j

0
1

2
3

0
(X
Y
) 2+

r
⋅X

Y
+
1

X
2+

(m
−
1)⋅X

Y
(22

−
r−

2m
)⋅X

Y
Y
2+

(m
−
1)⋅X

Y

1
k
+
(n
1 +

n
2 )⋅X

Y
+
g(G

)⋅(X
+
Y
)+

k
⋅X

Y
0

0
0

2
N
−
a
+
g
(D

/
4

)

⋅(X
+
Y
)+

(N
−
a)⋅X

Y
0

a
+
(g(D

)−
g
(D

/
4

)
)

(X
+
Y
)+

a
⋅X

Y
0

3
k
+
n
1 +

n
2 +

g(G
)⋅(X

+
Y
)+

k
⋅X

Y
0

0
0

Table5.4:F
S
4 ,k,j (X

,Y
)

k
j

0
1

2
3

0
1
+
X
Y

X
0

Y

1
2

0
0

0
2

3
0

1
0

3
2

0
0

0

Table5.5:F
E
4 ,k,j (X

,Y
)
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5.3.4 Order 3

We shall keep the following notation coherent with [CG16]:
S3 –K3 surfaces with a non-symplectic au-
tomorphism 
3∶ S3 → S3 of order 3,
E3 – elliptic curve with the Weierstrass
equation y2 = x3 + 1, and automorphism
�3 is given by �3(x, y) = (�3x, y),

r = dimH2(S3,ℂ)
3 ,
m = dimH2(S3,ℂ)�3 ,

Fix
(


3
)

= Fix
(


23
)

= {f1, f2, f3},

Fix
(


3
)

= L1 ∪ L2 ∪… ∪ Lk−1 ∪ C ∪ {P1, P2,… , Pℎ}, where

– the set {L1, L2,…Lk−1} ∪ {C} consists of curves which are fixed by 
3 together
with the curve C of maximal genus g(C), in fact Li are rational,

– {P1, P2,… , Pn} is the set of points which are fixed by 
3.

H i,j(S3,ℂ)
�S3

1

0

0

0

r

0

0

0

1

H i,j(S3,ℂ)�3

0

0

1

0

m− 1

0

0

0

0

H i,j(S3,ℂ)�23

0

0

0

0

m− 1

0

1

0

0

The following tables (5.6, 5.7) contains Poincaré polynomialsFS3,k,j(X, Y ) andFE3,k,j(X, Y ),
respectively:

k
j 0 1 2

0 (XY )2 + r ⋅XY + 1 X2 + (m − 1) ⋅XY Y 2 + (m − 1) ⋅XY

1 k + ℎ ⋅XY + g(C) ⋅ (X + Y ) + k ⋅XY 0 0

2 k + ℎ + g(C) ⋅ (X + Y ) + k ⋅XY 0 0

Table 5.6: FS3,k,j(X, Y )
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k
j 0 1 2

0 1 +XY X Y

1 3 0 0
2 3 0 0

Table 5.7: FE3,k,j(X, Y )

From 2.3 and tables 5.6, 5.7 we get Poincaré polynomial of Y3,n ∶
(

(XY )2 + r ⋅XY + 1 +
(

k + ℎ ⋅XY + g(C) ⋅ (X + Y ) + k ⋅XY
)

⋅
3
√

XY +
(

k + ℎ+

+ g(C) ⋅ (X + Y ) + k ⋅XY
)

⋅ 3
√

(XY )2
)

⋅
(

1 +XY + 3 3
√

XY + 3 3
√

(XY )2
)n−1

+

+
(

X2 + (m − 1) ⋅XY
)

⋅Xn−1 +
(

Y 2 + (m − 1) ⋅XY
)

⋅ Y n−1.

Similarly as before we obtain the following corollary

Corollary 5.3.7. The Euler characteristic of Y3,n is equal to an−1, where

⎧

⎪

⎨

⎪

⎩

an = 7an−1 + 8an−2,
a0 = e(Y3,1) = 24,
a1 = e(Y3,2) = 2r + 6ℎ + 12k + 4 − 12g(C) − 2m.

Therefore

e(Y3,n) =
1
9

(

188−2r−6ℎ−12k+12g(C)+2m
)

⋅(−1)n−1+1
9

(

28+2r+6ℎ+12k−12g(C)−2m
)

⋅8n−1.

5.3.5 Order 2

S2 –K3 surfaces with a non-symplectic au-
tomorphism 
2∶ S2 → S2 involution,
E2 – arbitrary elliptic curve with involution
�2(x, y) = (x,−y),
r = dimH2(S2,ℂ)
2 ,
m = dimH2(S2,ℂ)�2 ,

Fix
(

�2
)

= {a, b, c, d},

Fix
(


2
)

= C1 ∪C2 ∪…∪CN where the set
{C1, C2,… , CN} contains of curves whichare fixed by 
2 with sum of genera equals
N ′.

The following tables (5.8, 5.9) contains Poincaré polynomialsFS2,k,j(X, Y ) andFE2,k,j(X, Y ),
respectively:
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k
j 0 1

0 (XY )2 + r ⋅XY + 1 X2 + Y 2 + (m − 2) ⋅XY

1 N +N ′ ⋅ (X + Y ) +N ⋅XY 0

Table 5.8: FS2,k,j(X, Y )

k
j 0 1

0 1 +XY X + Y

1 4 0

Table 5.9: FE2,k,j(X, Y )

From 2.3 it follows that Poincaré polynomial of Y2,n equals
(

(XY )2 + r ⋅XY + 1 +
(

N +N ′ ⋅ (X + Y ) +N ⋅XY
)

⋅
√

XY

)

⋅
(

1 +XY + 4
√

XY
)n−1

+

+
(

X2 + Y 2 + (m − 2) ⋅XY
)

⋅ (X + Y )n−1.

Using the following relations (see [Voi93]):

r = 10 +N −N ′ and m = 12 −N +N ′

we can rewrite the above formula in terms ofN andN ′, i.e.
(

(XY )2 + (10 +N −N ′) ⋅XY + 1 +
(

N +N ′ ⋅ (X + Y ) +N ⋅XY
)

⋅
√

XY

)

×

×
(

1 +XY + 4
√

XY
)n−1

+
(

X2 + Y 2 + (10 −N +N ′) ⋅XY
)

⋅ (X + Y )n−1.

Remark 5.3.8. From Nikulin’s classification ([Nik87]) it follows that for any K3 surface S
with non-symplectic involution which fixesN curves with sum of genera equal toN ′, there
exists a mirror K3 surface S ′ and its non-symplectic involution which fixes N ′ curves with
sum of genera equal to N. Hodge diamonds of S × E/ℤ2

:
and S ′ × E/ℤ2

:
are equal to re-

spectively:
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1

0

0

1

0

0

111 + 5N −N ′11 + 5N −N ′

11 + 5N ′ −N

11 + 5N ′ −N 00

00

1

1

0

0

1

0

0

111 + 5N ′ −N11 + 5N ′ −N

11 + 5N −N ′

11 + 5N −N ′ 00

00

1

Figure 5.1: Hodge diamonds of Borcea-Voisin mirror pair

Corollary 5.3.9. The Euler characteristic of Y2,n is equal to an−1, where

⎧

⎪

⎨

⎪

⎩

an = 4an−1 + 12an−2,
a0 = e(Y3,1) = 24,
a1 = e(Y3,2) = 12N − 12N ′.

Therefore

e(Y2,n) =
1
2
(12 + 3N − 3N ′) ⋅ 6n−1 + 1

2
(36 − 3N + 3N ′) ⋅ (−2)n−1.

§ 5.4 Explicit computation of the zeta function

We shall give details of computation of the Zeta functionof a Borcea-Voisin Calabi-Yau n-fold
with a very particular shape of the Hodge diamond.

Let S be the K3 surface no. 18 from Table 1 of [Dil12b]. Then S is isomorphic to an
elliptic K3 surface X → ℙ1 whose Weierstrass equation is

y2 = x3 + �(z − 1)2z5

and on which we have the following �6-action:
�∶ (x, y, t)→ (�23x, y, z).

The surface S has the following invariants (see [Dil12b] and relations 5.3.5):
r m n n′ k a p3,4 p2,5 l N b � �
19 1 9 0 6 0 6 9 3 10 0 0 1
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The Hodge diamonds of the respective eigenspaces of induced �6-action on H∗∗(S,ℂ)
have the following forms:

H i,j(S,ℂ)�

1

0

0

0

19

0

0

0

1

H i,j(S,ℂ)�

0

0

1

0

0

0

0

0

0

H i,j(S,ℂ)�2

0

0

0

0

0

0

0

0

0

H i,j(S,ℂ)�3

0

0

0

0

1

0

0

0

0

H i,j(S,ℂ)�4

0

0

0

0

0

0

0

0

0

H i,j(S,ℂ)�5

0

0

0

0

0

0

1

0

0

The elliptic fibrations S → ℙ1 has 1 type IV fiber and 2 type II∗ fibers. To study zeta
function of S we need careful analysis of the resolution of singularities of

y2 = x3 + �(z − 1)2z5.

In fact it suffices to study resolution of singularities of y2 = x3 + � ⋅ z2 and y2 = x3 + � ⋅ z5.
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5.4.1 Resolution of singularities of y2 = x3 + � ⋅ z2

Let us describe blow up resolution of singularities of F1 ∶= {y2 = x3 + � ⋅ z2}. Process of
the resolution can be displayed in the following graph:

F1

F2 F3

x2 z3

Table 5.10: Process of the resolution of y2 = x3 + � ⋅ z2

where green boxes denote smooth affine pieces with the following details of a blow-up maps:
F2 = {y22 =�z

2
2 + x2} ∶

reverse map: (x, y, z)→ (x2, x2y2, x2z2),

inverse map: (x2, y2, z2)→
(

x,
y
x
,
z
x

)

,

�6-action:
(

�3x,−�23y, �
2
3z
)

=
(

�26x, �6y, �
4
6z
)

.

F3 = {y23 =x
3
3z3 + �} ∶

map: (x, y, z)→ (x3z3, y3z3, z3),

inverse map: (x3, y3, z3)→
(

x
z
,
y
z
, z
)

,

�6-action:
(

�3x,−y, z
)

=
(

�26x, �
3
6y, z

)

.

In any affine part let us mark exceptional fiber in red. Graph of intersections of curves in
the resolution has the following shape:

p(2,5)

Dotted curves are permutated by � and the last one is fixed.
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5.4.2 Resolution of singularities of y2 = x3 + � ⋅ z4

F1

F2 F3[(0, 0)]

F4[(0, 0)]F5

F6 F7[(0, 0)]

F8 F9

x2 z3

z5 x4

z6 x7

x8 z9

Table 5.11: Process of the resolution of y2 = x3 + � ⋅ z4

Reverse maps of smooth affine pieces:

F2 = {y22 =�x
2
2z
4
2 + x2} ∶

map: (x, y, z)→ (x2, x2y2, x2z2),

inverse map: (x2, y2, z2)→
(

x,
y
x
,
z
x

)

,

action: (�3x,−�23y, �23z
)

=
(

�26x, �6y, �
4
6z
)

.

F5 = {y25 =x
3
5z
2
5 + �} ∶

map: (x, y, z)→ (x5z25, y5z
2
5, z5)

inverse map: (x5, y5, z5)→
(

x
z2
,
y
z2
, z
)

,

action: (�3x,−y, z
)

=
(

�26x, �
3
6y, z

)

.

F6 = {y26 =x
2
6z3 + �} ∶

map: (x, y, z)→ (x26z
3
6, x

2
6y6z

4
6, x6z

2
6),

inverse map: (x6, y6, z6)→
(

x2

z3
,
y
z2
,
z2

x

)

,

action: (�23x,−y, �23z
)

=
(

�46x, �
3
6y, �

4
6z
)

.

F8 = {y28 =�z
2
8 + z8} ∶

map: (x, y, z)→ (x48z8, x
6
8yz8, x

3
8z8),
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inverse map: (x8, y8, z8)→
(

x
z
,
yz2

x3
,
z4

x3

)

,

action: (�3x,−y, z
)

=
(

�26x, �
3
6y, z

)

.

F9 = {y29 =� + x9} ∶

map: (x, y, z)→ (x39z
4
9, x

4
9y9z

6
9, x

2
9z
3
9),

inverse map: (x9, y9, z9)→
(

x3

z4
,
y
z2
,
z3

x2

)

,

action: (x,−y, �3z
)

=
(

x, �36y, �
2
6z
)

.

5.4.3 Resolution of singularities of y2 = x3 + � ⋅ z5

In this section we give details of a resolution of singularities of the elliptic surface y2 =
x3 + � ⋅ z5.

The graph 5.12 displays graph of resolution of singularities of fiber. The arrow means
blow up, variables xi (or zi) denote blow up map realized by respective variable. If there is
an affine piece with more than one singularity, we treat this as two separate pieces.

Reverse maps of smooth affine pieces:

F2 = {y22 = �x
3
2z
5
2 + x2} ∶

map: (x, y, z)→ (x2, x2y2, x2z2),

inverse map: (x2, y2, z2)→
(

x,
y
x
,
z
x

)

,

exceptional fiber: x2z2,
action: (�3x,−�23y, �23z

)

=
(

�26x, �6y, �
4
6z
)

.

F5 = {y25 = x
3
5z
2
5 + �z5} ∶

map: (x, y, z)→ (x5z25, y5z
2
5, z5),

inverse map: (x5, y5, z5)→
(

x
z2
,
y
z2
, z
)

,

action: (�3x,−y, z
)

=
(

�26x, �
3
6y, z

)

.

F10 ={y210 = �x
3
10z

3
10 + z10} ∶

map: (x, y, z)→ (x410z10, x
6
10y10z10, x

3
10z10),

inverse map: (x10, y10, z10)→
(

x
z
,
yz2

x3
,
z4

x3

)

,

action: (�3x,−y, z
)

=
(

�26x, �
3
6y, z

)

.
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F 1

F 2
F 3
[(
0,
0)
]

F 5

F 4
[(
0,
0)
]

F 7
[(
0,
0)
]

F 1
0

F 1
1

F 6
[(
0,
0)
]

F 8
[(
0,
0)
]

F 1
2

F 8
[(
0,
−
1∕
�)
]

F 1
4

F 9
[(
−
�,
0)
]

F 9
[(
0,
0)
]

F 1
7

F 1
8[
(�
,0
)]

x 2
z 3

z 5

x 4

x 7
x 1
0

z 1
1

z 6

z 9

z 9

x 8

x 8

x 1
2

x 1
4

z 1
7

x 1
8

Ta
ble

5.1
2:

Pro
ces

so
fth

er
eso

lut
ion

of
y2
=
x3
+
�
⋅z

5
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F11 ={y211 = �x
2
11z

3
11 + x11} ∶

map: (x, y, z)→ (x311z
4
11, x

4
11y11z

6
11, x

2
11z

3
11),

inverse map: (x11, y11, z11)→
(

x3

z4
,
y
z2
,
z3

x2

)

,

action: (x,−y, �3z
)

=
(

x, �36y, �
2
6z
)

.

F12 ={y212 = �x12z
2
12 + z12} ∶

map: (x, y, z)→ (x812z
3
12, x

12
12y12z

4
12, x

5
12z

2
12)

inverse map: (x12, y12, z12)→
(

x2

z3
,
yz4

x4
,
z8

x5

)

,

action: (�23x,−�23y, �3z
)

=
(

�46x, �6y, �
2
6z
)

.

F14 ={y214 = �x14z
2
14 − z14} ∶

map: (x, y, z)→ (x514(x14z14 − 1∕�)
3, x814y14(z14z14 − 1∕�)

4, x314(x14z14 − 1∕c)
2),

inverse map: (x14, y14, z14)→
(

x2

z3
,
yz4

x4
,
z3(cz5 + x3)

cx5

)

,

action: (�23x,−�23y, �3z
)

=
(

�46x, �6y, �
2
6z
)

.

F17 ={y217 = x
2
17z17 + �x17} ∶

map: (x, y, z)→ (x217z
7
17, x

2
17y17z

10
17, x17z

4
17),

inverse map: (x17, y17, z17)→
(

x4

z7
,
yx2

z6
,
z2

x

)

,

action: (�3x,−�23y, �23z
)

=
(

�26x, �6y, �
4
6z
)

.

F19 ={y219 = x
2
19z19 − �x19} ∶

map: (x, y, z)→ (

(x19z
7
19 − �)

2z519, (x19z19 − �)
2y19z

8
19, (x19z19 − �)z

3
19

)

,

inverse map: (x19, y19, z19)→
(

(� ⋅ z5 + x3)x
z7

,
yx2

z6
,
z2

x

)

,

action: (�3x,−�23y, �23z
)

=
(

�26x, �6y, �
4
6z
)

.

F20 ={y220 = �z20} ∶

map: (x, y, z)→ (

(x20z20 − 1∕�)
8x520, x

8
20(x20z20 − 1∕�)

12y20, x
3
20(x20z20 − 1∕�)

5) ,

inverse map: (x20, y20, z20)→
(

x5

z8
,
yz4

x4
,
z8(�z5 + x3)

�x8

)

,

action: (�23x,−�23y, �3z
)

=
(

�46x, �6y, �
2
6z
)

.

F21 ={y221 = �x21} ∶
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map: (x, y, z)→ (

x21z
5
21(z21 − 1∕�)

8, x721z
8
21(z21 − 1∕�)

12, x321z
3
21(z21 − 1∕�)

5) ,

inverse map: (x21, y21, z21)→
(

�x8

z8(�z5 + x3)
,

�x4y
w4(�z5 + x3)

, �z
5 + x3

�x3

)

action: (�23x,−�3y, z
)

=
(

�46x, �
5
6y, z

)

.

F22 ={y222 = �z22} ∶

map: (x, y, z)→ (

x822(x22z22 + 1∕�)
8z322, x

12
22(x22z22 + 1∕�)

8y22z
4
22, x

5
22(x22z22 + 1∕�)

3z222
)

,

inverse map: (x22, y22, z22)→
(

�x5

z3(�z5 + x3)
,
yz4

x4
,
(�z5 + x3)z8

�x8

)

,

action: (�23x,−�3y, �3z
)

=
(

�46x, �
5
6y, �

2
6z
)

.

F23 ={y223 = �x23} ∶

map: (x, y, z)→ (

x523z
8
23(z23 + 1∕�)

5, x723z
12
23(z23 + 1∕�)

8y23, x
3
23z

5
23(z23 + 1∕�)

3) ,

inverse map: (x23, y23, z23)→
(

�x8

z8(�z5 + x3)
,

�x4y
z4(�z5 + x3)

, z
5

x3

)

,

action: (�23x,−�3y, z
)

=
(

�46x, �
5
6y, z

)

.

F24 ={y224 = z24} ∶

map: (x, y, z)→ (

x524z
5
24(x24 − �)

7, x824y24z
7
24(x24 − �)

10, x324z
3
24(x24 − �)

4) ,

inverse map: (x24, y24, z24)→
(

x3 + �z5

z5
,

yz6

x2(�z5 + x3)
, z12

x4(�z5 + x3)

)

,

action: (x,−�3y, �23z
)

=
(

x, �56y, �
4
6z
)

.

F25 ={y225 = x25} ∶

map: (x, y, z)→ (

(x25z25 − �)7z525, (x25z25 − �)
10y25z

8
25, (x25z25 − �)

4z325
)

,

inverse map: (x25, y25, z25)→
(

x4(�z5 + x3)
z12

,
yx2

z6
, z

7

x4

)

,

action: (�3x,−�23y, �23z
)

=
(

�26x, �6y, �
4
6z
)

.

F26 ={y226 = z26} ∶

map: (x, y, z)→ (

x726(x26 + �)
5z526, x

10
26(x26 + �)

8y26z
7
26, x

4
26(x27 + �)

3z326
)

,

inverse map: (x26, y26, z26)→
(

x3

z5
,

yz6

x2(�z5 + x3)
, z12

x4(�z5 + x3)

)

,

action: (x,−�3y, �23z
)

=
(

x, �56y, �
4
6z
)

.

F27 ={y227 = x27} ∶

map: (x, y, z)→ (

x227(x27z27 + �)
5z727, x

2
27(x27z27 + �)

8y27z
10
27, x27(x27z27 + �)

3z427
)

,

inverse map: (x27, y27, z27)→
(

x4(�z5 + x3)
z12

,
yx2

z6
, z7

x(�z5 + x3)

)
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action: (�3x,−�23y, �23z
)

=
(

�26x, �6y, �
4
6z
)

.

Intersections of the curves may be presented in the following Dynkin diagram (E8:).
2 4 6

3

5 4 3 2 1

α,α
5

α
2
,α

4

α
3

p(2,5)

p(3,4)

p(2,5)p(2,5)

p(3,4)

p(3,4)

p(2,5)
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II
∗

II
∗ IV

0-section

2-section

3-section

Denote by C1 the 0-section, C2,… , C20 curves in the fibers (see picture 5.2). Given set
of curves is linearly independent since the matrix of intersection is non-singular:

det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −2 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −2 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= −3.

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15
C16

C17

C18 C19

C20

Figure 5.2: Curves in the fibers
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§ 5.5 Zeta function for d = 2

In the presenting section we compute zeta function of classical Borcea-Voisin Calabi-Yau
threefold.

Let (S, �S) be aK3 surface admitting a non-symplectic involution �S . Consider an elliptic
curve E with non-symplectic involution �E . Let us denote by H2(S,ℂ)�S the invariant part
of cohomology H2(S,ℂ) under �S and by r the dimension r = dimH2(S,ℂ)�S . We also
denote the eigenspace for −1 of the induced action �∗S onH2(S,ℂ) byH2(S,ℂ)−1 and by m
the dimension m = dimH2(S,ℂ)−1.

We use the notation adopted in the section 2.7.
The polynomial ZE,0,0: In that case:

ZE,0,0 = Zq (H∗∗(E)�E ) = 1
(1 − T )(1 − qT )

,

since the Hodge diamond of �E invariant part is equal to

1
0 0
1

The polynomial ZE,0,1: In that case:

ZE,0,0 = Zq
(

H∗∗(E)−1
)

= 1 − aqT + qT 2,

for some integer aq, since the Hodge diamond of �E invariant part is equal to

0
1 1
0

The polynomial ZE,0,1: In that case:

ZE,1,0 = Zq
(

H∗∗ (Fix(�E)
))

.

The last polynomial depends on the number of fixed points in Fix(�E) ∶= {a, b, c, d} which
are defined over Fq ∶

• All points a, b, c, d are defined over Fq. Then the Zeta function is equal to

(1 − T )4.
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• Points a, b, c + d are defined over Fq but c, d are not defined over Fq. The action has
the following linearisation

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟

⎟

⎟

⎠

∼

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟

⎟

⎟

⎠

,

with characteristic polynomial

(1 − T )3(1 + T ).

• a is defined over Fq and b, c, d not. The action has the following linearisation
⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞

⎟

⎟

⎟

⎠

∼

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 �3 0
0 0 0 �23

⎞

⎟

⎟

⎟

⎠

,

with characteristic polynomial

(1 − T )2(1 + T + T 2).

The polynomial ZE,1,1: This polynomial is obviously equal to 1.
Therefore table corresponding to elliptic curve E has the following form:

k
j 0 1

0 1
(1 − T )(1 − qT ) 1 − aqT + qT 2

1

1
(1 − T )4

,

1
(1 − T )3(1 + T )

,

1
(1 − T )2(1 + T + T 2)

1

Table 5.13: ZE,k,j(T )

Now let us make analysis of corresponding table for K3 surface S.
The polynomial ZS,0,0: In that case:

ZS,0,0 = Zq (H∗∗(S)�S )
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The Frobenius map acting on r curves induces permutation � ∈ Sr with decomposition into
disjoint cycles of lengths a1, a2,… , as for some natural s. Since the Hodge diamond of �S
invariant part is equal to

1

0

0

0

r

0

0

0

1

we have
ZS,0,0 =

1

(1 − T )(1 − qT )
s

∏

i=1

(

1 − (qT )ai
) (

1 − q2T
)

.

The polynomial ZS,0,1: One can see that

H2
ét

(

S,ℚl
)

= T (S)⊕NS(S)−1.

In general we cannot say much more but in special cases we can find quit explicit description
of the polynomial ZS,0,1. In particular if S is one of K3 surfaces appearing in Borcea-Voisin
construction then the poly can read out from Theorem 2.6.4. We shall compute polynomial
in two particular cases in sections 5.5.1 and 5.4.

The polynomial ZS,1,0: Let Cg be the curve of maximal genus g in Fix(�S). Then we
see that

ZS,1,0 = Zq
(

H∗
ét

(

Fix(�S)
))

=
det

(

1 − t ⋅ Frobq |H1
ét(Cg,ℚl)

)

(1 − T )(1 − qT )
s

∏

i=1
(1 − (qT )as)

.

Otherwise the local zeta function ZS,1,0 is equal to

1

(1 − T )(1 − qT )
s

∏

i=1
(1 − (qT )as)

.

The polynomial ZS,1,1: This polynomial is obviously equal to 1.
Therefore the corresponding table 2.2 is equal to
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k
j 0 1

0
1

(1 − T )(1 − qT )
s

∏

i=1
(1 − (qT )ai)

(

1 − q2T
) ZS,0,1

1
det

(

1 − t ⋅ Frobq |H1
ét(Cg,ℚl)

)

(1 − T )(1 − qT )
s

∏

i=1

(

(

1 − T ai
)(

1 − (qT )ai
)

) 1

Table 5.14: ZS,k,j(T )

5.5.1 Example

We shall compute the Zeta function of S × En/

Gd,n
in the case when S has particularly nice

arithemtic properties.
Let S be the K3 surface studied in [AOP02]. It can be defined as double cover of ℙ2

branched along the union of six lines given by
XYZ(X + �Y )(Y +Z)(Z +X) = 0.

One can see that it is a K3 surface with an obvious non-symplectic involution.

The resolution of the singularities of that surface is obtained in the following way: firstly
we blow up 3 triple points that defines 24 points on the double cover, thenwe blow up resulting
variety at 15 double points.
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The corresponding table 2.2 is equal to

k
j 0 1

0 1
(1 − T )(1 − qT )19

(

1 − q2T
)

1
(

1 − 
qqT
) (

1 − 
q�2T
) (

1 − 
q�2T
)

1 1
(1 − T )9(1 − qT )9 1

Table 5.15: ZS,k,j(T )

From 2.7 we have the following formula for zeta function of the classical Borcea-Voisin
threefold:

Zq

(

S × E/
ℤ2

: )

=

(

(

ZE,0,0(T ) ⋅ZE,1,0
(√

q ⋅ T
)

)

⊗
(

ZS,0,0(T ) ⋅ZS,1,0
(√

q ⋅ T
)

)

)

×

×

(

(

ZE,0,1(T ) ⋅ZE,1,1
(√

q ⋅ T
)

)

⊗
(

ZS,0,1(T ) ⋅ZS,1,1
(√

q ⋅ T
)

)

)

=

Now according to table 5.13 we have three cases depending on number of fixed points of
�E defined over Fq. Resulting zeta functions are summarized in the following table:

ZE,1,0 Zq

(

S × E/
ℤ2

: )

1
(1 − T )4

(

1 − aq yq qT + yq2q3T 2
) (

1 − aq �2yq T + �4yq2qT 2
)

(

1 − aq �
2yq T + �

4yq2qT 2
)

(1 − T ) (1 − qT )56
(

1 − q2T
)56 (1 − q3T

)

1
(1 − T )3(1 + T )

(

1 − aq yq qT + yq2q3T 2
) (

1 − aq �2yq T + �4yq2qT 2
)

(

1 − aq �
2yq T + �

4yq2qT 2
)

(1 − T ) (1 − qT )47 (1 + qT )9
(

1 + q2T
)9 (1 − q2T

)47 (1 − q3T
)

1
(1 − T )2(1 + T + T 2)

(

1 − aq yq qT + yq2q3T 2
) (

1 − aq �2yq T + �4yq2qT 2
)

(

1 − aq �
2yq T + �

4yq2qT 2
)

(1 − T ) (1 − qT )38
(

1 − q2T
)38 (1 + q2T + q4T 2

)9 (1 + qT + q2T 2
)9 (1 − q3T

)

Table 5.16: Zeta function of Y2,2
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§ 5.6 Order 6

ConsiderK3 surface S6 analysed in 5.4.1 and elliptic curve E6 with the Weierstrass equation
y2 = x3 + 1 together with a non-symplectic automorphism of order 6. Local zeta functions
for both S6 and E6 are written in the following tables:

k
j 0 1 2 3 4 5

0 1
(1 − T )(1 − qT )

1 − �qT 1 1 1 1 − �qT

1 1
1 − T

1 1 1 1 1

2 1
(1 − T )2

1 1 1
1 − T

1 1

3 1
(1 − T )2

1 1
1 − T

1 1
1 − T

1

4 1
(1 − T )2

1 1 1
1 − T

1 1

5 1
1 − T

1 1 1 1 1

Table 5.17: ZE6,k,j

k
j 0 1 2 3 4 5

0 1
(1 − T )(1 − qT )19(1 − q2T )

1
1 − �qT

1 1
1 − cqqT

1 1
1 − �qT

1 1
(1 − T )3(1 − qT )18

1 1 1 1 1

2 1
(1 − T )6(1 − qT )15

1 1 1 1 1

3 1
(1 − T )10(1 − qT )10

1 1 − �qT 1 1 − �qT 1

4 1
(1 − T )15(1 − qT )6

1 1 1 1 1

5 1
(1 − T )18(1 − qT )3

1 1 1 1 1

Table 5.18: ZS6,k,j

Applying formula 2.7.1 we get

Zq

(

S6 × E6/ℤ6

: )

=

[(

1
(1 − T )(1 − q ⋅ T )

⋅
1

(1 − 6
√

q ⋅ T )
⋅

1
(1 − 6

√

q2 ⋅ T )2
⋅

1
(1 − 6

√

q3 ⋅ T )2
⋅
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⋅
1

(1 − 6
√

q4 ⋅ T )2
⋅

1
(1 − 6

√

q5 ⋅ T )

)

⊗

(

1
(1 − T )(1 − q ⋅ T )19(1 − q2 ⋅ T )

×

× 1
(1 − 6

√

q ⋅ T )3(1 − 6
√

q ⋅ q ⋅ T )18
× 1
(1 − 6

√

q2 ⋅ T )6(1 − 6
√

q2 ⋅ qT )15
×

× 1
(1 − 6

√

q3 ⋅ T )10(1 − 6
√

q3 ⋅ q ⋅ T )10
× 1
(1 − 6

√

q4 ⋅ T )15(1 − 6
√

q4 ⋅ q ⋅ T )6
×

× 1
(1 − 6

√

q5 ⋅ T )18(1 − 6
√

q5 ⋅ q ⋅ T )3

)]

×

[

(1 − �qT )⊗

(

1
1 − �qT

)]

×

×

[(

1
1 − 6

√

q3 ⋅ T

)

⊗ (1 − 6
√

q3 ⋅ �q ⋅ T )

]

×

[(

1
1 − 6

√

q2 ⋅ T
⋅

1
1 − 6

√

q4 ⋅ T

)

⊗

(

1
1 − cq ⋅ q ⋅ T

)]

×

×

[(

1
1 − 6

√

q3 ⋅ T

)

⊗ (1 − 6
√

q3 ⋅ �q ⋅ T )

]

×

[

(1 − �q ⋅ T )⊗

(

1
1 − �q ⋅ T

)]

=

=
(1 − �q�qT )(1 − �qT )(1 − �qT )(1 − �q�qT )
(1 − T )(1 − qT )103(1 − q2T )103(1 − q3T )

.

Using the same method we are able to compute zeta functions of higher dimensional
quotients S6 × En−1

6
/

ℤ6

:
. In the table below we collect results for n = 2, 3, 4.

n Zq

(S6 × En−1
6

/

ℤ6

:
)

2
(1 − �q�qT )(1 − �qT )(1 − �qT )(1 − �q�qT )
(1 − T )(1 − qT )103(1 − q2T )103(1 − q3T )

3
1

(1 − T ) (1 − qT )340
(

1 − �q
2�q T

)

(

1 − �q2�q T
) (

1 − q2T
)1402 (1 − q3T

)340 (1 − q2cqT
)2 (1 − q4T

)

4

(

1 − �q
3�q T

) (

1 − q2�q T
)

(

1 − q2�q T
)(

1 − �q
3�q T

)

(1 − T ) (1 − qT )868
(

1 − q2T
)9548 (1 − q2cqT

) (

1 − q3cqT
) (

1 − q3T
)9548 (1 − q4T

)868 (1 − q5T
)

Table 5.19: Zeta function of Y6,2, Y6,3, Y6,4
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§ 5.7 More constructions

The results from previous chapters can be used to construct more interesting examples of
higher dimensional Calabi-Yau manifolds. We shall present constructions involving Fermat
quadricK3 surface and someK3 surfaces with purely inseparable automorphisms of order 6.

Let
F4 ∶=

{

X4
1 +X

4
2 +X

4
3 +X

4
4 = 0

}

⊂ ℙ3

be the Fermat quartic defined over ℚ in ℙ3. Consider a non-symplectic automorphism

�4∶ F4 ∋
(

X1, X2, X3, X4
)

→
(

�4X1, X2, X3, X4
)

∈ F4

of order 4. The fixed locus Fix(�4) consists of genus 3 curve D ∶=
{

X4
2 +X

4
3 +X

4
4 = 0

}

.

Since there are no isolated fixed points, we have the following theorem:
Theorem 5.7.1. There exists a crepant resolution of

F n
4
/

ℤn−1
4

:
→ F n

4
/

ℤn−1
4
.

Consequently F4,2n ∶=
F n
4
/

ℤn−1
4

:
is a Calabi-Yau 2n-fold.

The corresponding table 2.1 equals

k
j 0 1 2 3

0 (XY )2 + 2 ⋅XY + 1 X2 + 6 ⋅XY 7 ⋅XY Y 2 + 6 ⋅XY

1 1 + 3(X + Y ) +XY 0 0 0

2 1 + 3(X + Y ) +XY 0 0 0

3 1 + 3(X + Y ) +XY 0 0 0

Table 5.20: FF4,k,j

Therefore by 2.3.3:

ℎp,q
(

F4,2n
)

=

(

(

(XY )2 +XY + 1 +
(

4
√

XY + 4
√

(XY )2 + 4
√

(XY )3
)

⋅
(

1 + 3(X + Y ) +XY
)

)n
+

+
(

X2 + 6 ⋅XY
)n +

(

7 ⋅XY
)n +

(

Y 2 + 6 ⋅XY
)n

)

[XpY q].
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Propositions 3.1, 4.1 of [CH07] and 3.2.1 may be used to construct more higher dimen-
sional Calabi-Yau varieties.

Let S6, S ′6 be K3 surfaces with non-symplectic automorphisms 
6 and 
 ′6 of order 6 such
that only isolated points of Fix(
6) and Fix(
 ′6) are of type p(3,4). Example of such K3 surface
was described in Table 1 of [Dil12c].
Theorem 5.7.2. There exists a crepant resolution of

S6 × S ′6
/

ℤ6

:
→ S6 × S ′6

/

ℤ6
.

Consequently S6 × S
′
6
/

ℤ6

:
is a Calabi-Yau 4-fold.

Proof. The only singularity we need to check is the singularity coming from points of the
type p(3,4) of surfaces S6 and S ′6. These points produce singularity of type 1

6
(3, 4, 3, 2) which

has a crepant resolution, see 5.3 and section 2.1.3:

Figure 5.3: Crepant resolution of 1
6
(3, 4, 3, 2)

The maps form S6 × S ′6 to the resolution are give in affine charts as
(

x
z
, t
y2
, y3, z2

)

,
(

x
z
, t
2

y
,
y2

t
, z2

)

,
(x
z
, t3,

y
t2
, z2

)

,
(

z
x
, t
y2
, y3, x2

)

,
(

z
x
, t
2

y
,
y2

t
, x2

)

or
(z
x
, t3,

y
t2
, x2

)

.

Remark 5.7.3. Similarly as before we can consider the following generalisations of the above
constructions:

F4 × En−1
4

/

ℤn−1
4

and S6 × S ′6 × E
n−2
6

/

ℤn−1
6
,

120



where E4 and E6 denote elliptic curves with non-symplectic automorphisms of order 4 and
6, respectively. These quotients admits a crepant resolution of singularities by the same ar-
gument as in 5.3.1.
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Chapter 6

Fibre products of elliptic surfaces

We discuss desingularized fiber product Calabi-Yau threefolds (introduced by Schoen) and
give a method of computation of the Hodge numbers of fiberwise Kummer construction by
using Chen-Ruan cohomology formula.

§ 6.1 Schoen’s construction

Let (S1, �1), (S2, �2) be relatively minimal, rational elliptic surfaces with surjective maps
�1∶ S1 → ℙ1 and �2∶ S2 → ℙ1. ConsiderX ∶= S1×ℙ1 S2 the fiber product of S1 and S2. In
generalX is not smooth. The singularities are the points (s1, s2) where s1 and s2 are singular
points of the fibers of (S1, �1), (S2, �2) over a common point u ∈ U ∶= U1 ∩ U2, where U1
and U2 denote the images of the singular fibre of (S1, �1), (S1, �2) in ℙ1.

Assume that all fibres over U are semi-stable. Since both S1 and S1 are rational with
sections the fibre product X has trivial canonical bundle. The only singularities of the fiber
product are ordinary double points (nodes), they correspond to pairs of singular points of
fibers (S1)u and (S2)u for u ∈ U. In particularX is smooth iff U = ∅.A small resolutionX: of
X is a Calabi-Yau threefold. This construction was introduced by C. Schoen ([Sch88]) who
also gave a projectivity condition for X:.

M. Kapustka in [Kap09] gave extension of Schoen’s contruction for reduced fibers i.e. II,
III, IV.

Theorem 6.1.1 ([Kap09]). Let S1, S2 be two rational elliptic surfaces with section. Then

X = S1 ×ℙ1 S2 admits small resolution iff all fiber of S1 ×ℙ1 S2 are equal to F × I0, In × Im,
III × In, III × III, IV × In, II × II, where F denotes any fiber of an elliptic ruled surfaces.
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Following [CS12] assume that both fiberS1, S2 are semistable or they have the same type.
Under this assumption X has a crepant resolution of singularities X: which is a Calabi-Yau
threefold.

6.1.1 Hodge numbers

In this section we discuss methods of computating of Hodge diamond of X: (see [CS12]).
The Euler characteristic of X: is the sum of Euler characteristics of singular fibers de-

scribed in the following table

Fiber X� In × Im II × II III × III IV × IV

e
(

X�
)

2mn 6 12 24

Table 6.1: Euler characteristic of the singular fibers

Therefore

(6.1.1) e
(

X
:)

= 2

(

∑

�∈U
t1(�)t2(�) + 2n2 + 2n3 + 3n4

)

,

where t1(�) (resp. t2(�)) denote the number of components of the fiber (S1)� (resp. (S2)�), n2,
n3 and n4 denote the number of singular fibers of type II, III and IV, respectively.

By the Shioda-Tate formula
(6.1.2)
ℎ1,1(X

:
) = d +3+ rank(MW(S1))+ rank(MW(S2))+

∑

�∈U1∪U2

(

#
(

components of X:�

)

− 1
)

,

where d = 1 if S1 and S2 are isogeneous and d = 0 otherwise.
Using this formula Schoen gave examples of rigid Calabi-Yau threefolds as a self-fiber

products of a rational elliptic surfaces with four semi-stable fibers (Beauville surface).
Merging formulas 6.1.1, 6.1.2 we can obtain the following

ℎ1,2(X
:
) = d + #(U1 ∪ U2) − 5 +

∑

�∈U1⧵U

(t1(�) − 1) +
∑

�∈U2⧵U

(t2(�) − 1).

§ 6.2 Kummer fibrations

Every birational map �i∶ Si → Si preserving fibration �i∶ Si → ℙi is an automorphism
(see [IS96]). For a pair of �i∶ Si → ℙ1 (i = 1, 2) of automorphisms acting fiberwise we can
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consider also
� ∶= �1 ×ℙ1 �2∶ X1 ×ℙ1 X2 → X1 ×ℙ1 X2

which lifts to an automorphisms �∶ X → X. If � preserves the canonical form onX and the
quotient X/

� admits an a crepant resolution of singularities then we again get Calabi-Yau
threefold, we can use orbifold formula to compute its Hodge numbers.

Schoen studied the most natural case of construction, with quotient of X by the natural
involution (fiberwise Kummer construction).

Let Si be a rational elliptic surface with section bi∶ ℙ1 ↦ Si for i = 1, 2. Suppose S1, S2
admit only singular fibers of type In, II, III or IV. On the fiber product X ∶= S1 ×ℙ1 S2 we
get an induced section b = (b1, b2)∶ ℙ1 ↦ X. Now consider involutions

ik∶ Sk ∋ x↦ bk(�k(x)) − x ∈ Sk,

where �k denotes projection onto k-th coordinate, for k = 1, 2. Let us define involution
i∶ X ∋ (x1, x2)↦

(

i1(x1), i2(x2)
)

∈ X.

Observe that i is well defined because on each fiber we have a group structure.
Theorem 6.2.1 ([Kap09]). There exists a crepant resolution of singularities

Y ↦ X/

⟨i⟩.

Consequently Y is a Calabi-Yau threefold (not necessarily projective).

Moreover ifX does not have singular fiber of type I1×In, then Y admits projective crepant

resolution of singularities.

Kapustka gave a method of computing Hodge numebrs using presentation of S1, S2 as
double quartics (see [Kap09]). We shall describe more direct approach based on orbifold’s
formula (see section 2.3). Let X: be a Calabi-Yau resolution of X, the involution i lifts to an
involution on X:.

Since we consider only small resolutions all components of Fix(i) contained in fibers are
rational hence we do not affectH1,2

orb(Y ). From 2.3 it follows that

H1,2(Y ) = H1,2
(

X
:)

⟨i⟩
+

⨁

C∈Λ(Fix(i))
H0,1(C) = H1,2 (X)⟨i⟩ +

⨁

C∈Λ(C1×ℙ1C2
:

)

g(C),

whereC1 ∶= Fix(i1), C2 = Fix(i2) andΛ(C1 ×ℙ1 C2
:

) denotes the set of connected components
of the normalization C1 ×ℙ1 C2

: of the fiber product C1 ×ℙ1 C2.

125



From Hurwitz formula
⨁

C∈Λ(C1×ℙ1C2
:

)

(2 − 2g(C)) = 2 ⋅ 16 −
∑

P∈C1×ℙ1C2
:

(eP − 1)

where eP denotes multiplicity of P . Therefore in order to find ⨁

C∈Λ(C1×ℙ1C2
:

)

g(C) it suffices to
compute

• number of components of C1 ×ℙ1 C2
:

,

• ramification index of any point P ∈ C1 ×ℙ1 C2
:

.

Sections C1 i C2 can be presented by using monodromy representation:

Theorem 6.2.2 ([Mir95]). Let B = {b1, b2,… , bn} ⊂ ℙ1 be a finite set of points. Then there

is a 1 − 1 correspondence

⎧

⎪

⎨

⎪

⎩

Isomorphism classes of holomorphic
maps F ∶ X → ℙ1 of degree d
whose branch points lie in B

⎫

⎪

⎬

⎪

⎭

↔

⎧

⎪

⎨

⎪

⎩

Conjugacy classes of n-tuples (�1,… , �n)of permutations in Σd such that �1… �n = 1and the subgroup generated by the �i’sis transitive

⎫

⎪

⎬

⎪

⎭

Adding some unramified points we can assume that they are given as sequences of n points
b1,… , bn ∈ ℙ1 and permutations �(i)1 , �(i)2 ,… , �(i)n ∈ Σdi for i = 1, 2, where di is the degree
of map Ci → ℙ1 and

�(i)1 … �(i)n = 1.

We do not assume that the group ⟨�(i)1 … �(i)n ⟩ is transitive as the curve Ci can be reducible.
Now forming the product representation �i = �(i)1 × �(i)1 ,… , �n = �(i)n × �

(i)
n we get mon-

odromy representations of C1 ×ℙ1 C2
: which allow us to compute components of C1 ×ℙ1 C2

:

their genera and consequently the sum of genera.

6.2.1 Ramification index of point P ∈ C1 ×ℙ1 C2
:

If i1, i2 are involutions then curves C1 and C2 are fourfold covers of ℙ1, if moreover they are
reducible (which happens in particular for standard Kummer fibration) then the sum of genera
of components of C1 ×ℙ1 C2

: can be computed form the analysis of behaviour of involution on
singular fiber.

We start with a careful study of the action of the involution i on singular fibers of S1, S2.

126



Lemma 6.2.3 ([Kap09]). Assume that S is a rational elliptic surface with chosen 0 section

with reduced fibers. Let i be the involution of the form

i∶ x ↦ b − x,

where b is a section of S. Let F be a singular fiber of S. Then we have the following possi-

bilities:

• The fiber F is of type I1. Then i acts on F by symmetry with three fixed points

• The fiber F is of type I2k+1, where k ≥ 1. Then i acts on one of the components of F by

symmetry with two fixed points outside singularities of F and interchanges the respec-

tive pairs of the remaining components. The singularity opposite to the component on

which i acts is fixed

• The fiber F is of type I2k, where k ≥ 1. Then we have one of the following cases:

1. The involution i has two fixed points – two opposite singularities of F and inter-

changes pairs of components of F .
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2. The involution i acts on two opposite components of F by symmetry, interchanges

respective remaining pairs of components – i has 4 fixed points outside singular-

ities of F .

• The fiber F is of type II. Then i has two fixed point together with singular point of F .
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• The fiber F is of type III. Then we have one of the following cases:

1. The involution i fixes only singular point and interchanges two components of F .

2. The involution i acts on both components fixing singular point and one more point

on each component – in total three fixed points.

• The fiber F is of type IV. Then i fixes the triple singular point, interchanges two of the
components of the fiber and acts on third component fixing one more point – in total

two fixed points.

6.2.2 Components of the fixed locus of Fix(i)

We shall give a more direct description of components of Fix(i) in the case when i1, i2 are
non-symplectic involutions. In this case both curve (possible reducible) C1, C2 give 4 ∶ 1
coverings of ℙ1.

C1 C2

ℙ1
4∶1 4∶1
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Let us compute the number of irreducible components of C1 ×ℙ1 C2. Assume thatD1 and
D2 are irreducible components of C1 and C2, respectively. Consequently, for each irreducible
connected component C ⊆ D1 ×ℙ1 D2 we have the following diagram

C

D1 D2

ℙ1

where Dk → ℙ1 is a covering of degree at most 4, for k = 1, 2.

Observation 6.2.4. We have the following cases

1. If D1 → ℙ1, D2 → ℙ1 are a ∶ 1 and b ∶ 1 coverings, where gcd(a, b) = 1

C

D1 D2

ℙ1

a∶1b∶1

a∶1 b∶1

C

D1 D2

ℙ1

b∶1a∶1

b∶1 a∶1

then C ≃ D1 ×ℙ1 D2 and hence we get one component.

2. If D1 → ℙ1, D2 → ℙ1 are 2 ∶ 1 coverings, then we have two possible diagrams

C

D1 D2

ℙ1

1∶1

2∶1

1∶1

2∶1 2∶1

C

D1 D2

ℙ1

2∶1

4∶1

2∶1

2∶1 2∶1

then

• D1 ×ℙ1 D2 has two components, each of them corresponds to the first diagram; in

this case D1 ≃ D2 (as ℙ1-curves) or

• D1 ×ℙ1 D2 is irreducible.
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3. If D1 → ℙ1, D2 → ℙ1 are 3 ∶ 1 coverings, then we have three possible diagrams

C

D1 D2

ℙ1

1∶1

3∶1

1∶1

3∶1 3∶1

C

D1 D2

ℙ1

2∶1

6∶1

2∶1

3∶1 3∶1

C

D1 D2

ℙ1

3∶1

9∶1

3∶1

3∶1 3∶1

then

• D1 ×ℙ1 D2 has three components, each of them corresponds to the first diagram;

in this case D1 ≃ D2 and the covering D1 → ℙ1 is cyclic or

• D1 ×ℙ1 D2 has two components, one of them corresponds to the first diagram and

the later to the second one; in this caseD1 ≃ D2 but the coveringD1 → ℙ1 is not
cyclic, or

• D1 ×ℙ1 D2 is irreducible.

4. If D1 → ℙ1, D2 → ℙ1 are 2 ∶ 1 and 4 ∶ 1 coverings, then we have two possible

diagrams (and two symmetric one)

C

D1 D2

ℙ1

1∶1

4∶1

2∶1

2∶1 4∶1

C

D1 D2

ℙ1

2∶1

8∶1

4∶1

2∶1 4∶1

then

• D1×ℙ1D2 has two components, each of them corresponds to the first diagram and

�2∶ D2 → ℙ1 factors through �1∶ D1 → ℙ1 or

• D1 ×ℙ1 D2 is irreducible.

5. If D1 → ℙ1, D2 → ℙ1 are 4 ∶ 1 coverings, then we have three possible diagrams

C

D1 D2

ℙ1

1∶1

4∶1

1∶1

4∶1 4∶1

C

D1 D2

ℙ1

2∶1

8∶1

2∶1

4∶1 4∶1

C

D1 D2

ℙ1

4∶1

16∶1

4∶1

4∶1 4∶1
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then

• D1 ×ℙ1 D2 has four components, each of them corresponds to the first diagram or

• D1×ℙ1D2 has three components, one of them corresponds to the second diagram

and the later two to the first diagram or

• D1 ×ℙ1 D2 has two irreducible components, each of them corresponds to the sec-

ond diagram or

• D1 ×ℙ1 D2 is irreducible.

In cases 4 and 5 we can give only necessary conditions in terms of ramification indices.

Finally note that a pair of points in fibers over the same b ∈ ℙ1 with ramification indices e1
and e2, respectively give rise to d points in D1 ×ℙ1 D2

: with ramification indices e1e2
d
, where

d = gcd(e1, e2).

6.2.3 Examples
Beauville surface I3I3I3I3

Consider rational elliptic surface S → ℙ1(t) given in Weierstrass form

y2 = 4x3 − 3(8t3 + 1)x − 8t6 − 20t3 + 1.

The discriminant of the right hand side is equal to

432t3
(

2t + 1 +
√

−3
)3
(t − 1)3

(

−2t − 1 +
√

−3
)3
.

Since 4x3−3(8t3+1)x−8t6−20t3+1 is irreducible, we get a 3-section, which is not a cyclic
covering. Therefore the self fiber product has 5 irreducible components; three of them came
from case 1 another two from case 3.

Since the ramification index of fixed points in I3 × I3 are equal to 1, 1, 1, 1, 2, 2, 2, 2, 2, 2.
From 6.2 it follows that

10 − 2
∑

C∈Λ(C1×ℙ1C2)
g(C) = 2 ⋅ 16 − 4 ⋅ (6(2 − 1) + 4(1 − 1)) = 8,

so ∑

C∈Λ(C1×ℙ1C2)
g(C) = 1.

We can get more precise description of the geometry of the fixed locus of involution
using a monodromy argument. The monodromy representation (computed with function
monodromy from MAPLE package algcurves) is presented in the following table
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0 1 �3 �23

(2, 3) (1, 3) (1, 2) (1, 3)

Table 6.2: Monodromy of Beauville surface I3I3I3I3

Therefore the monodromy representation in Σ4 × Σ4 ⊂ Σ16 is given by

0 (2, 3)(5, 9)(6, 11)(7, 10)(12, 8)(14, 15)

1 (1, 11)(2, 10)(3, 9)(4, 12)(5, 7)(13, 15)

�3 (1, 6)(2, 5)(3, 7)(4, 8)(9, 10)(13, 14)

�23 (1, 11)(2, 10)(3, 9)(4, 12)(5, 7)(13, 15)

The group G generated by the above four permutations in Σ16 acts on {1, 2,… , 16} in a
non-transitive way. In fact the set {1, 2,… , 16} decomposes into a union of five sets

{1, 2,… , 16} = {1, 6, 11} ∪ {2, 3, 5, 7, 9, 10} ∪ {4, 8, 12} ∪ {13, 14, 15} ∪ {16}.

The group G preserves each of theses five sets and induces transitive action. Consequently
C1 ×ℙ1 C2
: decomposes into 5 connected components with degrees of the map to ℙ1 equals 3,
6, 3, 3, 1. Over the four branch point C1 ×ℙ1 C2

: we have six ramification points with indices
2. The number of ramification points on the five components equals 4, 12, 4, 4, 0. Hence the
genera equals 0, 1, 0, 0, 0.
Remark 6.2.5. The advantage of this monodromy based approach is that it requires only
knowledge of a Weierstrass equation.
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