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MAGIC MODULE

Example 1. Solve in integers the following equation
y4 =23 4T

Proof. Consider all possible residues modulo 13. RHS leads to residues

x 0|12 (3|4 (|5[6|7|8|9[10|11 |12
z3 (mod 13) 01| 8 |1|12|8|8|5 |5 |1|12| 5 |12
2347 (mod 13) [ 7[8[12[8] 6 [2|2]12]12[8| 6 [12] 6

while LHS produces the following residues
vy |o|1]2]3]4]5]6|7|8]9]|10]11]12]
y4(mod13)|0|1|3|3|9|1|9|9|1|9|3|3|1|

Both sets of residues are disjoint thus the equation has not integer solutions. [

Example 2. Decide whether the equation z* 4+ ¢ = 2! + 7 has an infinite
number of positive integer solutions.

Proof. We prove that for z > 13, the given equation has no integer solutions.
Indeed, if z > 13 and z* + y® = 2! + 7, then z* + 4®> = 7 (mod 13). Consider all
possible residues modulo 13 of 7 — z* and °:

T 0(1(2(3|4|5[{6| 7|89 |10]11]12

z* (mod 13) [0 133|919 9[1]9[3[3 |1
7— 2t 7|6|4|4|11|6|11|11|6|11| 4 |4 ]| 6

Y 0112345 718 10| 11 | 12

vy’ (mod13) [0 1[8|1[12[8[ 8 [ 5 |5 1 [12] 5 [12

From these tables we read that z + y® # 7 (mod 13).
Therefore the equation z* + y3 = 2! + 7 forces 2 < 12. Thus z < 24 < 1214+ 7
and y < y® < 12! 4+ 7. It means that the number of solution is finite. O

The following theorem may be helpful in finding of "magic” modulo (like 13 in
above cases).

’

-

Theorem 3. Let p > 2 be a prime and k be a positive integer. Then the
numbers
1k12ka'-'7(p_ l)k
1

p— . .
gcd(p—1,F) different residues modulo p.

give
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Homework.

Problem 4. Solve in integers the following equation

z5=y2+4.

Proof. We have y!° = 0,1 (mod 11); thus 3° = —1,0,1 (mod 11). Also, z? =
0,1,3,4,5,9 (mod 11); thus 2 +4 = 2,4,5,7,8,9 (mod 11). Hence z2 44 and y'°
are different mod 11. O

Problem 5. Solve in positive integers the following equation
228 4+ 47 = 11.

Proof. The possible residues of 28 mod 43 and y7 mod 43 are 1,21,41,11,16 and
1,42,37 respectively. O

SQUARE BETWEEN SQUARE

Example 6. Find all solutions of the following equation in integers

22 +x4+1=19>%

Proof. If > 0, then
(z+1)2>2 +2+1> 2%

Thus 22 + = + 1 lies between squares, hence cannot be a perfect square.
If x < -2, then

> vz +1> (z+1)%
and again we get a contradiction.
It remains to check z = 0, —1, which lead to solutions

(I’ y) = (Oa 1)’ (Oa _1)’ (_1a 1)a (_17 _1)

Example 7. Find all solutions of the following equation in integers

ty=23 442

Proof. We see that

=y — 42t 42 1= (2y—1)2

:1:4+y=z?‘+y2 = T
But, whenever z > 2 or z < —2, then
(22 — 2z —1)? < 42® —42® +1 < (227 — 2)%.

Therefore (2y—1)? it lies between 2 consecutive squares and cannot — contradiction.
So, z € {—1,0, 1}, this gives the solutions

(Ia y) = (07 O)a (Oa 1)7 (13 0)7 (17 1)7 (_17 2)) (_11 _1)



Example 8. Find all positive integers (a,b) for which a® + 6ab + 1 and
b3 + 6ab + 1 are perfect cubes.

Proof. WLOG a < b, then
b <b®+6ab+1<b>4+6b>+1<b>+6b%+1264+8=(b+2)>
Since b® 4 6ab + 1 is a perfect cube, we must have
b +6ab+1=(b+1)°

or equivalently 2ab=b(b+ 1) ie. b=2a —1.
It remains to check whether a® + 6ab + 1 is a cube if b = 2a — 1. Thus we need
to find all integers a for which a® + 1242 — 6a + 1 is a cube. From the inequality

a® <a®+6a®—6a<a®+12a®> —6a+1< a®+12a% + 48a+ 64 = (a + 4)*
we get that

a®+12a° —6a+1€{(a+1)%(a+2)> (a+3)%
. Therefore we are left with three cases:
o a®+12a> —6a+1=(a+1)> then 9> —9a=0,s0a=0o0ra=1.
o a® +12a®> —6a+ 1 = (a+2)3, then 6a% — 18a — 7 = 0 — no solutions.
o a® +12a®> —6a+ 1= (a+3)3, then 3a? — 33a — 26 = 0 — no solutions.
Finally (a,b) = (1,1) is the only pair satisfying given conditions. O

Example 9. Find all positive integers (k,m) for which k% +4m and
m? + 5k are perfect squares.

Proof. If m > k, then

(m+3)? =m? +6m+9 >m? +5m > m? + 5k > m?,
since m? + 5k is a perfect square, it follows that m? + 5k = (m + 1)? or m? 4 5k =
(m+2)2%

If m? 4+ 5k = (m +1)2 = m? + 2m + 1, then 2m = 5k — 1 and form problem
condition k2 + 4m = k? 4+ 2(5k — 1) = k? + 10k — 2 is a perfect square. But
k2 + 10k — 2 < k2 + 10k + 25 = (k4 5)2, so

k2 +10k — 2 < (k+4)2 = k* + 8k + 16.

Therefore 2k < 18 and k < 9. Since 2m = 5k — 1, k must be odd. Values of
k2+10k—2at k=1, 3,5, 7, 9 are equal 9, 37, 73, 117, 169, respectively. Thus
only k = 1 and k = 9 provide squares. Respective values of m = %(Sk — 1) are
equal 2 and 22.

Ifm? 4+ 5k = (m+2)? = m?2 +4m+4, then 4m = 5k —4, so k? +4m = k*> + 5k —4
is a perfect square. But

k® +5k—4 < k> +6k+9=(k+3)%
hence k? + 5k —4 < (k+2)* = k? + 4k +4, which gives k < 8. Moreover m = 2k—1
is an integer, so 4 | k. Again k? + 5k — 4 for k = 4, 8 equals 32, 100, respectively
and only for £k = 8 we get a square. Also m = %k —-1=09.

It remains to consider the case m < k. Then

(k+2)2 =k +4k+4 >k + 4k > k* + 4m > k?,
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and so k% +4m = (k 4+ 1)2 = k? 4+ 2k + 1, thus 2k = 4m — 1 — contradiction since

244m — 1.
Finally (k,m) = (1,1),(9,22),(8,9) are only pairs satisfying given conditions.
O
Homework.

Problem 10. Prove that there are no positive integers a, b such that 2a%+1,
2b? + 1, 2(ab)? + 1 are all perfect squares.

Proof. Assume that such a,b exist. Clearly a,b > 1 and WLOG a > b. Then
4(2a% +1)(2(ab)? + 1) = (4a®b + b)2 + 8a% — b + 4
is a perfect square. But
(4ab+b)? < (4a%b+b)> +8a® —b* +4 < (4a®b+b+1)? = (4a’b+b)> +8a%b+2b+1.
O

Problem 11. Find all integers a > 1,b > 1 such thata | b+1and b | a®—1.

Proof. Let b= ka — 1 and a® — 1 = £b = fka — £, for some integers k and £. Then
a|f—1,sof=ma+ 1 for some integer m. Therfore

a® —mka+m—k=0.

Now we see that
A =m?k? —dm + 4k.

e If m < k, then (mk)? < A. Moreover A < (mk+2)? iff (m—1)(k+1) > —2.
Thus if m # 0, then (mk)? < A < (mk + 2)2, so A = (mk + 1)2. Hence
—4m + 4k = 2mk + 1, — impossible since both sides have different parity.
Therefore m = 0 and then a = k% and b = ka—1 = k* — 1. Thus (s, s> — 1),
where s > 2 is an integer satisfy problem.

e If m > k, then A < (mk)? and A > (mk — 2)? iff (m + 1)(k — 1) > 0.
Therefore if k # 1, then (mk — 2)? < A < (mk)?, so A = (mk —1)?, i.e.
—4m + 4k = —2mk + 1 and again we have contradiction because of parity.
Therefore k =1 and thena=m—-1landb=ka—-1=a—-1=m — 2.
Therefore (s,s — 1), where s > 3 is an integer satisfy problem assumption.

e If m =k, then (s2,s% — 1), where s > 2 satisfy problem.

O

VIETA JUMPING, DESCENT AND RATIONAL ROOT THEOREM

Example 12. Solve in integers the following equation z? + y? = 322.

Proof. Consider nontrivial solution (z,y,z) with |z| + |y| + |z| minimal. Since
3| 22 +y? we see that = 3z, y = 3y; for some z; and y; in Z. Plugging this into
the equation, we get 22 = 3(2? + y), hence z = 32; for some 2; € Z. Observe that
77 +y} = 322, therefore (z1,¥1, 21) is also solution of the given equation. Moreover

|z| + |yl + =]
3
contradiction. O

|z1]| + [y1] + |21] = <lz| + [y] + ||,



Example 13. Let W(z) be a polynomial of integer coefficients such that
for any pair of different rational number 71, r9 dependence W (ry) # W (rs)
is true. Decide, whether the assumptions imply that for any pair of different
real numbers t¢1, t2 dependence W (t1) # W (t2) is true.

Proof. Take W (z) = 2 —2x. Clearly, the second statement is not true, so it suffices
to prove that the first is.

Assume for the sake of contradiction that r* — 2r = s — 2s. Rearranging, we
get r® — s = 2(r — 5). Dividing by (r — s), we get r2 + rs 4+ s2 = 2.

Since r and s are rational, we write r = ¢ and s = 5 in lowest terms. So our

equation becomes %;- +5+ %; =2, or
a’d® + b*c® + abed = 2b*d?

Note that the equation implies that at least one of a or d is even and that at
least one of b or ¢ is even. If a was even, then ¢ would have to be even as well (a
and b are relatively prime). So b and d are odd. But that would mean that the
LHS is divisible by 4 but the RHS is not, contradiction.

So we know d was even, which implies that b is even. So we let d = 2d’ and
b = 2b’ So our equation is now

4(a2d12 + b’202 + ab'cd') _ 32bl2d12
We divide by 4 to get
a2 d12 + bl2 c2 + abl cd' _ 8bl2 dl2

Since we know that a and ¢ are odd, that implies that b’ and d’ are even. From
here, we can use infinite descent to conclude that b and d have infinite powers of 2
in their prime factorization, which is a contradiction. O

Example 14. Let a, b be positive integers such that ab+ 1 divides a® + b2.
2
Prove that 2% is a perfect square.

2
ab+1

Proof. Consider the following equation with fixed positive integer k
2402

a“® + —k

ab+1

Let A be a set of all pairs (a,b) of nonegative integers a and b such that @
holds i.e.

(0-1)

a? + b2
A={(a,b)€NxN. Py =k}.

Suppose that k is not a perfect square.

Let (ap,bp) € A be an element of A with a minimal sum ag + by among all
elements of A. We may assume that ag > by > 0.

The equations

22 +b5
xby + 1 a
is equivalent to a quadratic equation in x

(0-2) z® — kboz + b3 —k = 0.

?
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Note that 1 = ag is a root of . From Vieta’s formulas we get another root xo
of @ ie.
b —k

agp ’
From @[) follows that, x5 is a nonzero integer xo # 0, (otherwise k = b3 which
contradicts to assumption about k.)

Moreover x5 > 0. Indeed, if 29 < 0 then

0=213 —kboro + b2 —k>23 +k+b2—k>0,

contradiction. Therefore zo > 0, hence (z2,by) € A. By the formula and
inequality ag > by we have

12=kb0—a0=

B—k _a—k
Tg=——<

ag

<agp

It means that zs + by < ag + bpwhich contradicts to minimality of ag + bg. Od

Example 15. Let a and b be positive integers, such that 4ab — 1 divides
(4a? — 1)%. Prove that a = b.

Proof. Firstly, observe that
4ab — 1|p*(4a® — 1)2 — (4ab — 1)(4a®b — 2ab + a?) = (a — b)%.
Consider the following equation with fixed positive integer k
(a—b)* _
dab—1

Let A be a set of all pairs (a,b) of nonegative integers a and b such that (0-1)
holds i.e.

(0-3)

dab —1
Let (ag,bo) € A be an element of A with a minimal sum ag + by among all elements
of A. We may assume that ag > by > 0.
The equations

A={(a,b)eNxN: (a —b)” =k}.

(.’E + b0)2 —k
4:Eb0 -1 ’
is equivalent to a quadratic equation in z
(0-4) 2% — (2by + 4kbg)z + b + k = 0.

Note that 1 = ag is a root of ‘ From Vieta’s formulas we get another root xo
of ie.
(0-5) m2=2b0+4kbo—ao=b%a';k.
From (0-5) follows that, x5 is a positive integer, hence (z2, bp) € A.
Now we have the following inequality
_ (@0 —b0)? _ (a0 —bo)(ao +bo) _ (a3~ B))
dagbg — 1 — 4agby — 1 4agby — 1

< ai —b.

Therefore

_BW+k _ b5+ (ag —bg) _
ap ag

which means that z9 + by < ag + by — contradiction. Thus ag = by and k£ = 0 i.e.

a=>b. Od

9 )



Example 16. Let n > 2 be an integer such that the equation
m%+zg+...+zi =TI1T3...Tn

has at least one solution in positive integers. Prove that this equation has
infinitely many solutions in positive integers.

Proof. Let a; = min{zy,2s,...,z,}. Given equation may be considered as a qua-
dratic equation in ¢ :
t2+z§+...+x?1=t:rg...:vn.
This equation has a root t; = x; and from Vieta’s formulas we derive another root
to = z3...x, — 1. Therefore n-tuple
(z2...Tp —T1,22,...,2n)
satisfies given equation.

Now we prove that new n-tuple has greater sum. Indeed, it is equivalent to the
inequality zs ...z, > 2z;. Suppose that it does not hold. Then 2z; > z5...2, >
m’l‘_l,s0221’11_2. Thusn=2orzy;=1lorn=3and z;1 =2 =29 = 3.

In the first case we have an equation z? + 23 = z1z9 which has not even real
roots. In the second one, 5 ...z, < 2z; = 2, thus n-tuple (21,29, ..., z,) consists
of all one’s or n — 1 one’s except one 2. These sequences does not satisfy given
equation.

The last case cannot hold because (2, 2, 2) does not satisfy equation 23 +z3+23 =
r1xr9T3.

O

Homework.

Problem 17. Prove that the equation
6(6a> + 3b% + ¢*) = 5n>

has no solutions in integers except a =b=c=n=0.

Proof. Suppose that there is nontrivial solution. The RHS is divisible by 3, so 3
must divide n i.e. n = 3m for some integer m. Moreover 9 | 5n% — 36a2 — 18b? so
¢ = 3d, for some integer d. We can now divide out the factor 9 to get

5m® = 4a® + 2b° 4 6d°.
Now take m, a, b, d to be the solution with the smallest sum and consider residues
(mod 16).
Observe that perfect squares gives residues 0, 1, 4, or 9 (mod 16). Clearly m is
even so 5m? = 0,4 (mod 16). Similarly, 4a®> = 0,4 (mod 16). Hence 2b% + 6d> =
0,4,12 (mod 16). But 2b®> = 0,2,8 (mod 16) and 6d? = 0,6,8 (mod 16). Therfore

26% + 6d> = 0,2,6,8,10,14 (mod 16).

So it must be 0 (mod 16). Thus b and d are both even. But a cannot be even,
otherwise ; §; %; 5 would be a solution — contradiction.
So we can divide out the factor 4 and get

5k? = a® + 22 + 62
for some integers k,e, f with a odd. Hence k is also odd. So 5k? — a2 = 4,12

(mod 16). But we have just seen that 2e? + 6f2 cannot be 4 or 12 (mod 16). So
there are no solutions. O



Problem 18. Let z,y be integers different —1 such that
4 4

-1 -1
T Y

y+1 z+1

Prove that = 4+ 1 | z4y* — 1.

€ Z.

Proof. Let a = xy+_11 and b= ya;;ll By assumption a,b € Q and a+b,ab € Z. Thus

(X —a)(X —b) = X? — (a+b)X + ab € Z[X],

so a,b € Z. Therefore z + 1 | y* — 1, then clearly z + 1 | * — 1. Since z* = 1
(mod z + 1), the result follows. O

Problem 19. Find all positive integers a,b,c such that ¢ + % + £ and
% + § + £ are both integers.

Proof. Notice that ¢, b < are rational roots of polynomial
a

X (E b ) <+ + )X—1=(X—%)(X—g)(X—§),

so they are integers. Since their product equals 1, then a = b = c. O

Problem 20. Suppose that a,b are two odd positive integers such that
2ab+ 1| a® + b + 1. Prove that a = b.

Proof. Note that 2ab + 1 | a® + b + 1 implies that 2ab+ 1 | (a — b)2.
Now consider the positive integer solution set (a,b) of the equation
(a—b?
2ab+1
where k is a fixed positive integer. Let (ag, by) be a solution for which the sum is
minimal. Without loss of generality let ag > by. Now we consider another equation
(z — b)?
2xby + 1
Obviously one of the roots is ap. The other root ag = 2bg(k+1) —ay is a positive
integer. We also have that o = b"i—o_k. But

= k<= 2% —2zbo(k+ 1)+ b’ —k=0.

2
—k _ by?
bo <L<a0:ao+bo>ao+a0
ap ap
— contradiction to our assumption. Therefore ag = by, so k= 01i.e. a =0b. O

Example 21. Positive rational number a and b satisty the equality
a® + 4a%b = 4a® + b1

Prove that the number /a — 1 is a square of a rational number.




Proof. Note that
a(a +2b)% = a® + 46®b + 4ab® = 4a® + b* + 4ab® = (2a + b?)?,

thus

~ (2a+1b%)? 20+ b?
‘= (a + 2b)2 and a = a+2b’

Therefore v/a € Q. Moreover x = b is a root of quadratic equation
22 — 2v/ax + 2a — av/a = 0.

Simultanously coefficients of these equation are rational, hence its discriminant too.
Thus

A = (2v/a)? - 4(2a — av/a) = da(v/a — 1)

is a perfect square, in particular

is a perfect square, too.
O

Proof. As in the above solution we have that /a € Q. Let ¢ := +/a, then our
equality becomes b 4 4¢*b = 4¢* 4 b*. Hence

4 2 2 9
c2+4b:4+<b> :<<b> +2> a
(& C C

SO
2
2 2 2 2
<b+c> =c?+4 2+4b:<(b> +2> :
C C
thus
b\ > 2b
()12
C
i.e.

Proof. As in the previous solutions we get that

~ (2a+b?)?
va= (a+ 2b) ’
so we are left with proving that
(b — 2b+ a)(a + 2b)
—1=
Va (a + 2b)2

is a square of a rational number. Since a is a perfect square of some rational, it is
enaugh to prove that a(b? — 2b + a)(a + 2b) a square of a rational number. But

a(b?® — 2b+ a)(a + 2b) = a®b* + a® + 2b%a — 4b%a =
= a?V? 4 4a® + b* + 2b%a — 4a®b — 4b%a = (2a — b* — ab)®.
(]
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1. WELL KNOWN THEOREMS AND LEMMAS

Fact 22. Let a,b be integers, then there exists integers x, y such that
az + by = ged(a, b).

Fact 23 (Z/pZ is a field). Any number a € {1,2,...,p—1} has an inverse,
where p is a prime.

Theorem 24 (Little Fermat’s Theorem). For any integer a and prime p
the following holds
a’ =a (mod p).

Theorem 25 (Euler Theorem). For any integers a and n such that
ged(a,n) =1 the following holds

a®™ =1 (mod n).

Theorem 26 (Chinese Remainder Theorem). Let ny,na,...,n; be integers
pairwise coprime and let aj,ao,...,ar be an arbitrary integers, then the
system of congruences

z=a1 (mod ni)
r=ay (mod ng)

z=a; (mod ng)

has ezxactly one solution modulo nins . ..ny.

1.1. Problems.

Example 27. Prove that if p | a? — b?, then p? | a? — bP, where a,b are
positive integers and p is a prime.

Proof. From Little Fermat’s Theorem a? = a (mod p) and b? = b (mod p), thus
a=b (mod p). Therefore

a4 aP %4 4P =ar  par 4 4P =paP =0 (mod p),

SO
a? — bW =(a—b)(a” ' +aP2b+...+ P71
is divisible by p?. ]

Example 28. Let a, b be integers such p | a® + b2, where p is a prime of
the form 4k + 3. Prove that p | a and p | b.
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Proof. Suppose that p { a, then p{ b too. Assume a? = —b? (mod p). Taking p;i,l
power of both sides we get

a?!=—bt*~! (mod p) (here we used the fact that p—1

is an odd number).

But from the Little Fermat’s Theorem we get that
l=a?1=—p1=-1 (modp),

contradiction, since p > 2. O

Example 29. Let a,b be a positive integers such that ged(a,b) = 1. Prove
that there exists m, n such that a™ +b" =1 (mod ab).

Proof. Take m = ¢(b) and n = ¢(a) and use Euler Theorem . O

Example 30. Prove that for n > 3

n

1989 | n™" —n"".

Proof. Observe that if ged(n,m) = 1, then the congruence " = pn" (mod m)

is equivalent to n”" ~™" = 1 (mod m), which is implying by divisibility ¢(m) |
n™" —n" (Euler Theorem ).
Since 1989 = 32 .13 - 17 we need to prove the following divisibilities:

e by 9: if 3 | n then it is obvious. Suppose that 3 { n, then we need to show
that 6 | n™ — n™. But it follows from parity and the fact that n2 = 1
(mod 3).

e by 13: if 13 | n then it is obvious. Suppose that 13 { n. We show that
12 | n™ —n". For even n divisibility by 4 is clear. Now for odd n we use
n? =1 (mod 4). Divisibility by 3 was done in previous point.

e by 17: for 17 | n clear. If 17 { n then we prove that n™" = n™ (mod 16).
Indeed it is clear for even n because n > 4. For odd n we use n2 = 1
(mod 8) to get that n™ =n (mod 8).

O

Example 31. Prove that if p = 3k 4 2 is a prime, then 13,23 ... (p—1)3
are distinct modulo p.

Proof. Suppose that a® = b (mod p) for some a,b € {1,2,...,p — 1}. Taking
%2 power of both sides we get that a?~2 = b2 (mod p), hence a?~1b = b~ la
(mod p). From the Little Fermat’s Theorem follows that b = a (mod p), which is
impossible. O

Example 32. Determine all positive integers relatively prime to all the
terms of the infinite sequence

a,=2"+3"+6" -1, forn>1.
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Proof. Take any prime p > 3. Then from Little Fermat’s Theorem we get

2P—2+3P—2+6P—2-1E%+%+%—1=0 (mod p).

For n = 2 we have a,, = 48 which is divisible by 6. O

Example 33. Prove that for any prime p > 3 the following divisibility holds

p|11...122...2...99...9-123456789.
S S S———
P b 4 P

Proof. Observe that 11...1 = 10’;_1, thus

n

9111...122...2...99...9-123456789 | =
S N N

P P P
=9(11...1+11...1+...+11...1—11...1—11...1—...—1) =
S—_—— == S—— S\ =\
9p 8p P 9 8
=10 +10% + ...+ 107 —10° — 108 — ... — 10,
which is divisible by p from Little Fermat’s Theorem , because 10*? = 10* (mod p)
fork=1,2,...,9. O

Example 34. Suppose that p is an odd prime such that 2p+1 is also prime.
Show that the equation zP + 2yP +5zP = 0 has no solutions in integers other
than (0,0, 0).

Proof. We will prove that it doesn’t have any others. From the Little Fermat’s
Theorem :

2p+1|a®*! —a=a(a? —1)(a? +1)
so for every integer a we have a? = 0 or 1 or —1 mod p. By verifying manually
all cases we can see that the only possibility is p = 3 (since zP + 2yP + 52F = 0
mod 2p + 1). Alternatively we can observe that z? + 2y?P + 52zP gives residue not
gretaer then 8 modulo 2p + 1, so only 5 and 7 are possible.

So we are left with proving that the equation z3 + 2y> + 523 = 0 has no solutions
in integers. To do this consider this equation modulo 9. One can easily check that
we must have z =y = 2z = 0 (mod 3) but in this case just divide by 27 and repeat
the process. It will terminate unless z =y =z = 0. O

Example 35. Prove that there exist 2018 consecutive integers which are
divisible by a square of some integer greater then 1.

Proof. From the Chinese Remainder Theorem there exists n such that
n=0 (mod p?)
n=-1 (mod p2)

=-2018  (mod pZy;s)-



13

Example 36. Prove that there exist 2018 consecutive integers which are
not perfect powers.

Proof. From the Chinese Remainder Theorem there exists n such that

n=p (mod p?)
n=—-1+ps (mod p3)

= —2017 + p2o18 (mod p3o1s)-

Example 37. We call a positive integer n nice if there exist positive integers
a, b, ¢ such that the equality

n= ng(ba C) ng(aa bC) ar ng(C, a’) ng(b1 Ca) r ng(a’ b) ng(C, ab)

holds. Prove that there exist 2018 consecutive positive integers which are
nice.

Proof. We may choose such positive integers x1,zs, ..., 18 that the numbers

y1 = 23(21 +2),y2 = 23(22 + 2), .. -, Yoo1s = T3015(T2018 + 2)

are pairwise coprime. For example, we may choose z1 =l and z; = y1y2...y;—1—1
for every consecutive i. This choice guarantees that for every integer 2 < i <
2018 both z; and z; + 2 (hence, y; as well) are coprime with any of the numbers
Y1,92,-- -, Yi-1-

If a positive integer n is divisible by any of the numbers y;, ys,. .., y2018 then it
is nice. Indeed, if, say, n = y;m = :z:?(x,- + 2)m for some positive integers m and
1 <4 <2018 then

n = ged(b, ¢) ged(a, be) + ged(c, a) ged (b, ca) + ged(a, b) ged(c, ab)

for a = mz?, b=mzx;, c= ;.
Since the numbers y1, yo, . . ., Y2018 are pairwise coprime, the Chinese Remainder
Theorem implies that there exists a positive integer k satisfying the equalities

k=—-i (moduy;), fori=1,2,...,2015.

This means that k + 7 is divisible by y; for any 1 < i < 2018. Thus, the consecutive
positive integers k + 1,k + 2,...,k + 2018 are all nice, and the statement of the
problem is proved. O

2. QUADRATIC RESIDUES

Definicja 38. For an integer a and prime p such that ged(a, p) = 1, we say that a is
a quadratic residue if a = 2 (mod p) for some z. Otherwise z is to be nonquadratic
residue.

Put

1 if a is quadratic residue

(—) = 4 —1 if a is not a quadratic residue
0 ifpla
which is called Legandre’s symbol of a (mod p).
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Fact 39. Assume that a, b are integers coprime with p. The following are

true
here erists exactly 25~ qua,dmtzc residues among 1,2,...,p—1
- (5)-
. (a) (a (mod p))
p
p—1

[ ]
0

(mod p)

<z>5 9
)

?
|
<

*eno,dlpmm
N UG

Theorem 40. Let p,q > 2 be a distinct primes. Then

B)-c=

2.1. Some problems.

Example 41. Let p be a prime number. Prove that there exists z € Z for
which p | 22 — 2+ 3 if and only if there exists y € Z for which p | y% —y +25.

Proof. The statement is trivial for p < 3, so we can assume that p > 5. Since
p| 22 — 2 4+ 3 is equivalent to

pla@?—z+3)=(2z—1)2 +11,
integer x exists if and only if 11 is a quadratic residue modulo p. Likewise, since
4(y* — y +25) = (2y — 1)* + 99,

y exists if and only if 99 is a quadratic residue modulo p. Now the statement of the
problem follows from
<—11) _ <—11 . 32> _ (—99)
P p p )

Example 42. There are given integers a and b such that a is different from
0 and the number 3 + a + b? is divisible by 6a. Prove that a is negative.

Proof. Suppose that b2 4+ 3 = ak, where 6 | k + 1. We claim that k is negative. If
-3

not, then k has a prime divisor p of the form 6¢45. But p | b> 43, hence (—) =1
p

— contradiction.
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Example 43. Let ¢ be an integer which is not perfect square. Then, there

exists prime p > 2 such that (%) =—1.

Proof. WLOG assume that c is squarefree i.e. ¢ = p1ps...p,, where p; < pa <
... < p, are primes. Consider two cases:

e p; is odd. Let ry,79,...,7, be such that (r—l = —1 and ALl I 1 for
p1 i

Pi
2 < i < n. Form Chinese Remainder Theorem and Dirichlet’s Theorem we
find prime p such that

p=r; (mod p;)
p=ry (mod p2)

p=r, (modp,)
p=1 (mod 4).
Observe that

P\ _(ri\ _)-1 wherei=1,
pi) \pi) |1 where2<i<n.
Pi

Since p =1 (mod 4), then from the Gauss Theorem we now that (—) =
p

)
=), so
pi
©)-6)6) ()
p p p p
e py = 2. Let ro,...,7, be such that %) = 1 for 2 < i < n. Using again
the Chinese Remainder Theorem and Dirichlet’s Theorem we find prime p
for which
p=r2 (mod pp)
p=r3 (mod p3)

p=r, (modp,)
p=5 (mod 8).

B-G-

for 2 < i < n. Since p = 1 (mod 4) we know that (;) = (;) . But

Therefore

2
p=>5 (mod 8) implies that (;) = —1. Hance

006 (&)~
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3. FOR INFINITY NATURALS

In many problems with assumptions holding for infinity many naturals, the good
strategy is to find special (tricky) natural number which fits to the problem state-
ment and derives contradiction. Also limit argument (some basic analysis) is al-
lowed and often kills problem.

Example 44. Let a,b € N be naturals such that for any n € N divisibility
a™ +n | b™ + n holds. Show that a = b.

Proof. Suppose that a # b. Consider prime p which does not divide a — b. From
Chinese Remainder Theorem there exists natural n satisfying

n=1 (mod p—1)
=—a (mod p).

Then from Little Fermat’s Theorem
a"+n=a+n=0 (modp) oraz b"+n=>b+n=>b—a (mod p),

so p | a® +n and ptb™ + n, which is contradiction with problem assumption. [

Sometimes we don’t need such a tricky n.

Example 45. Let a be a positive integer such that 4(a™ + 1) is cube of
some integral for any natural number n. Show that a = 1.

Proof. Since 4(a® + 1) and 4(a® + 1) are cubes, then their quotient a® —a® + 1 is a
cube, too. If @ > 1, then a® — a® + 1 < (a?)?, thus a® —a® + 1 < (a® — 1), hence
(a—1)(3a® — 2a% — 1) + 1 < 0 — contradiction. O

Now its time for analysis...

Example 46. Let a and b be integers such that 2"a + b is a perfect square
for all positive integers n. Prove that a = 0.

Proof. Suppose a # 0. Then a > 0, otherwise for large enough, the number 2"a + b
is negative. There exists a sequence of positive integers {z,},>1 such that z, =
V2"a + b for all n. Easy to see that

nl.lg_loo(2:lln — Tpyo) =0.

Thus there exists positive integer N such that 2z, = z,.9 for all n > N. But
equality 2z, = z,,9 is equivalent to b = 0. Hence a and 2a are both perfect
squares, which is impossible for a # 0. O

HOMEWORK

Problem 47. Let a,b be positive integers such that for any positive integer
n the number (n + a)(n + b) is a product of even number of primes. Prove
that a = b.
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Proof. For any positive integer ¢ define

) {0 if £ is a product of even number of primes
1 if Zis a product of odd number of primes.
Assume (wlog) that a < b. Let k be a sufficiently large integer such that n :=
k(b —a) —a > 0. Then
(n+a)(n+b)=k(k+1)(b—a)?
is a product of even number of primes, thus A(k(k+1)) = 0, hence A\(k) = A(k+1).

It means that for large enough numbers, value of A is constant. This is impossible,
since A(p) = 1 for any prime p and A(m?) = 0 for any integer m. O

Problem 48. Let a,b, c be integers with a # 0 such that an? +bn +cis a

perfect square for any positive integer n. Prove that there exist integers z

and y such that @ = 22, b= 2zy and ¢ = y°.

Proof. Define sequence of positive integers x,, = vVan? + bn + c. Then
lim (17"+1 - m'n) = \/E

n——+oo

Thus there exists positive integer N such that z,,; = =, ++/a for all n > N. Thus
a = x? for some z. A simple induction shows that z, = zy + (n — N)z forn > N,
SO

(3-1) (zy — Nz +nz)? =2’n? + bn+c
for all n > N. From that equality we get
(N —n)(2aN +b—2znz) =0,
thus b = 2z(zy — Nz). Putting b into [3-1] we compute ¢ = (zy — Nz)2. Therefore
y ;= zn — Nx works. O

4. SPECIAL PROBLEMS

Problem 49. Integers ay,ao,...,a, satisfy
l<ai<a<...<a,<2a.
If m is the number of distinct prime factors of ajas ... a,, then prove that

(a1ag---ap)™ ! > (n)™.

Example 50. Let C > 1 be a real number. Define sequence of positive real
numbers aq, as, as, .. ., satisfying a; = 1, as = 2 and also

Umn = @Gy, and  amin < C(am, +a,) for m,n e N*.

Show that a,, = n for any n € N*.

Problem 51. Prove that for any € > 0 there exists integer n such that the
greatest prime divisor of n? + 2018 is smaller than en.




