March camp 2019 - Number Theory

Dl Doorer.

1. EXPONENT (L2 ONLY)

Problem 1. Prove the identity
lem(a, b, c)? _ ged(a, b, c)?
lem(a, b) - lem(b, ¢) - lem(c,a)  ged(a, b) - ged(b, ¢) - ged(c, a)

for all positive integers a, b, c.

Proof. For an arbitrary prime p, suppose the exponent on p in the prime factor-
ization of @ is @’ and define V', ¢’ similarly. Assume WLOG a’ > b’ > /. Take the
reciprocal of both sides of the desired equation; then the exponent on p in the prime
factorization of the LHS is

—2max(a’, b, ) + max(a’,b’) + max(b',c’) + max(c’,a’) = —2a' +a' +b' +a' =¥V’
while the exponent on p in the prime factorization of the RHS is
—2min(a’, ¥, ') + min(a’,b’) + min(¥’,¢’) + min(c’,a’) = -2 +b' + '+ =V

so the two sides have the same prime factorization and are therefore equal. O

Problem 2. Suppose that a,b, ¢ are positive integers such that a® divides
b¢, and a° divides ¢®. Prove that a? divides be.

Proof. The condition implies that for any prime p, we have b-v,(a) < c¢-vp(b) and
c-vp(a) <b-vp(c). Hence,

vp(bc) = 1y(0) +15(0) 2 (245 ) ala) 2 20,00

This means that a? | be. O

Problem 3. Let a, b, ¢ be positive integers such that
ab be ca
a+b b+c c+a
are integers and ged(a, b) = ged(b, ¢) = ged(c, a) = d. Prove that

d > \/2min{a, b, c}.

Proof. Let a > b > ¢, a = dz, b = dy and ¢ = dz. Thus, ged(z,y) = ged(z,2) =
ged(y,z) =1, £ > y > z and we need to prove that d > 2z. Indeed, since

ab dzy

a+b z+vy
1
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and ged(zy,z +y) = 1, we obtain that = + y divides d, which gives
d>z+y> 2z

Problem 4. Let aj,as,...,ar,b1,bs,...,b; be positive integers such that
ged(a;,b;) = 1 for all i € {1,2,...,k}. Let m = lem(by,bo,...,bx). Prove
that

aim asgm apm
cd , nocon = ged(ay, ao, . .., ax).
g ( b’ by ™ ) ged(ar, az k)

Proof. For arbitrary prime p, let v,(a;) = ci, vp(b;) = d;. We have min(c;,d;) = 0
for each i. Let m' = max(d;, ds,...,dr). We must show min(c; —dy +m/,co —da +
m/,... ¢, —di +m') = min(cy,eo,...,c,). We consider the following 2 cases:
e c; = 0 for some i. Then RHS = 0. If m’ = 0, then we are done; otherwise,
consider d; such that d; = m’. Then ¢; = 0, so ¢; —d; + m’ = 0, so
LHS = 0.
e ¢; # 0 for all 7. Then d; = 0 for all d;, so both sides are equal. Extending
this argument to all primes, we see that the prime factorization of both
sides are equal, so we are done.

O

Problem 5. Let a, b, ¢, d be positive integers such that ab = cd. Prove that
ged(a, ¢) - ged(a,d) = a - ged(a, b, ¢, d).

Proof. Let p be any prime, and let p* || a, and define ¥, ¢, d’ similarly. We have
a'+b' = ' +d', and now wish to show min(a’, ¢')+min(a’,d’) = o’ +min(a’, V', ¢, d').
WLOG, we may let ¢ < d’. Then we have 3 cases: Case 1: a’ < ¢ < d'. Since
V=dd+d-a >d+d—-d =d, we have min(a’,¥,c/,d') = a’. Then both
sides are equal to 2a’. Case 2: ¢/ < d < d'. Then LHS = a' + ¢, and RHS =
a + min(d,¥,d,d'") = d’ + min(d',c’). Suppose that ¥’ < ¢’. Then b’ + a’ <
W +d < d +d, contradiction. Thus, min(¥/,c) = ¢/, and RHS = a’ + ¢/. Case
3 <d <da. Then LHS = +d', and RHS = a’ + min(¥, ). Suppose that
O >c. Thend + bV >d +b >d + ¢, contradiction. Thus, min(¥, ') = ¥, and
RHS = d +V = LHS. Applying this argument for all primes, we see that each
side has the same prime factorization, so they are equal. O

Problem 6. Let m,n be a positive integers such that
lem(m,n) + ged(m,n) = m +n.

Prove that either m | n or n | m.

Proof. Let a = ged(m,n), b = lem(m,n). We know ab = mn and so a+b=m+n.
Hence

a+b=m+a—b<=r(m—a)(m—b)=0.
m

WLOG m = a, then n = b and the conclusion follows. O



Problem 7. Let aq, by, ¢; be natural numbers. We define

= ng(bl,Cl), b2 = ng(Cl, al), Cy = gcd(al, bl),
and

= lem(by, c2), bz =lem(eg,az), c3 = lem(ag,by).
Show that ged(bs, c3) = as.

Proof. Let (a1,b1,¢1) = g with a1 = zg,b; = yg,¢1 = 2zg with (z,y,2) = 1. Let
(z,y) = d, let (y,z) = e, let (z,z) = f. Note that (d,e) = (e, f) = (f,d) = 1,
so x = adf, y = bde, z = cef for some a,b,c. Note that (a,b) = (a,c) = (a,e) =

(b,c) = (b, f) = (c,d) = 1.
Then a; = adfg, by = bdeg, c; = cefg. So as = eg, by = fg, co = dg. Then
ag = dfg, by = deg, c3 = efg. Then ged(bs,c3) = eg = as. O

2. DIVISIBILITY

Problem 8. Let a, b, ¢ be positive integers. Prove that
lem(a, b) # lem(a + ¢, b+ ¢).

Proof. Suppose we do find a, b, c admitting the equality. We prove that ged(a, b) | c.
Indeed; pick p® to be a maximal prime power divisor of d = ged(a, b). Then
max{vp(a + ¢),vp(b+c)} = v, (lem(a + ¢, b+ ¢))
= vp (lem(a, b)) > e
so p® | a + c or p°® | b+ c. Either way, p°® | ¢; proving the claim.

Let a = dz,b = dy,c = dz with (z,y) = 1. Suppose ¢ | z+2,q | y + z is a prime
number. Then ¢ | zy = lem(z + 2,y + 2) so q | = and q | y; contradiction! Hence,
ged(z + 2,y +2)=1. So

=lem(z + 2,y + 2)
_ @+2)+2)
ged(z + 2,y + 2)
=(z+2)(y+2)
clearly false! O

Problem 9. Let z,y be a positive integers, such that 22 —4y+1 is a multiple
of (z — 2y)(1 — 2y). Prove that |z — 2y| is a square number.

Proof. Let a =z — 2y # 0 (otherwise all is trivial) and b = 2y — 1. Then
2 —dy+1=(a+b+1)2—2b—1=0a%+b%+ 2ab+ 2a.
Hence, the number
a2 +b% 4+ 2a
ab

must be integer. Particularly, a | b?2. Let a = c%f, where ¢ and f are non-zero
integers and f is square-free. Then b = cfd for some integer d. Now rewrite ¢ as

A2+ Af2d% + 22 f _ Af+ fd%+2
- cfid - cfd
From it, f | 2. But f is odd because so is b, so f = £1 and a = +c2. O

t=




Problem 10. Let a,b and ¢, be a positive integers such that ged(a,b,c) =1
and

a? +b? + 2 = 2(ab + bc + ca).
Prove that all of a, b, ¢ are perfect squares.

Proof. From the condition, we obtain:
(a+b—c)? = 4ab,
(a—b+c)? = 4dac,
(—a+b+c)? = 4be.

Hence, ab, be, ca are all perfect squares. Moreover, as ged(a,b,c) = 1, we see that
a, b, c are perfect squares. O

Problem 11. Let a1, a9, ..., a, be positive integers with product P, where
n is an odd positive integer. Prove that

ged(al + P,ay + P,...,a, + P) <2gcd(ai,...,a,)".

Proof. Suppose ged(ay,ag,--- ,a,) = z, and set by = 2 by = 22 ... b, = o,
Clearly ged(by,--- ,b,) = 1.

Note that this means al* + P = al’ + ajag - --a, = 2™ (b + byba---b,), so

ged(al + P,--- ,al + P) = z"ged(b} + biby---by, -+ b1 + biba---by).
To prove the given inequality, we need to show
ged(b} + biba - - by, -+ b + biba---b,) < 2.

Let d := ged (b} +biba -+ - by, - -+ , b2 +bybs - - - by,); we claim that d is relatively prime
of each of the b;’s. To see this, note that if there a b; and a prime p so that p | b; and
p|d, then p | biby---by, and since p | d | b7 + by ---by,, we have p | b7 = p | b;,
implying that p divides each of the b;’s. This contradicts ged(by,--- ,b,) = 1.

Now for 1 < i < n, we have

d| b} +biby---by = b = —biby---b, (mod d).
Multiplying these congruences for 1 < i < n, and noting that n is odd we have
(bibg---bp)™ = —(biba---b,)" (mod d) = d|2(biba---b,)".

But since d is relatively prime to by,--- ,b,, this implies d | 2 = d < 2, as
required. O

Example 12. Let a,b,c € N with ged(a®? — 1,6> — 1,¢2 — 1) = 1. Prove
that,
ged(ab + ¢, be + a, ca + b) = ged(a, b, c)

Proof. Let
G = ged(ab + ¢, bc + a, ca + b) = ged(ab + ¢, (b —1)(c — a), (a — 1)(c — b)).
Since
ged(ab+e,b—1,a—1)=ged(c+1,b—1,a—1) =1 and
ged(ab+c,c—a,a—1)=ged(b+1,c—1,a—-1) =1,



and symmetry of a, b, we have
G =ged(ab+c¢,c — a,c — b) = ged(a(b+1),c— a,c—b).

Moreover
ged(b+1,c—a,c—b)=ged(b+1l,a+1,c+1)=1,
so we have G = ged(a, ¢ — a,c — b), which implies G = ged(a, b, ¢). O

Problem 13. Let m,n be distinct positive integers. Prove that
ged(m,n) +ged(m+1,n+1) + ged(m +2,n +2) < 2|m —n| + 1.
Further, determine when equality holds.

Proof. WLOG m > n. Let k = m — n, we have
LHS = ged(m, k) + ged(m + 1, k) + ged(m + 2, k)

and RHS =2k + 1.
If k = 1,2, then inequality is obvious.
If £ > 2, not all of the ged’s are equal to k. Therefore
kE k
ged(m, k) + ged(m + 1, k) + ged(m + 2, k) < k+§ +5< 2k + 1.

Equality holds for consecutive m,n; m —n =2 or n — m = 2 and m, n even. O

Problem 14. Let a, b, ¢ be a non-zero integers such that
a b ¢

b ¢ a
is integer. Prove that abc is a perfect cube.

Proof. Take any prime p. Let z = vp(a), y = vp(b) and z = wv,(c). It is enough to
prove that 3 | z +y + 2. If no two of 2z + z, 2y + =, 2z + y are equal then

vp(a®c+ b2a+ c?b) = min{2z + 2,2y + 2,2z + y} :=m
. Since p®t¥*# | abc, we have m > = + y + z and
z+y+2)=02z+2)+2y+z)+22+y)>m+(m+1)+(m+2) > 3m,

contradiction.
Therefore we may assume that 2z + z = 2y + z, then

r+y+z=z+y+z—2x+2)+ 2y+z)=3y
is divisible by 3. O

Problem 15. Let a and b be a positive integers such that
lem(a, b)
ged(a,b) ~ °
Prove that lem(a,b) = ged(a, b)?.

—b.
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Proof. Let d = ged(a,b), then a = a;d and b = byd where ged(a;,b;) = 1. Thus
lem(a, b) = da1b; so the given identity can be written as a;b; = d(a;—b;). Therefore
a1 | d and by | d. Thus a1b; | d, s0o a1 — by =1 and d = a;1b;. Hence

lem(a,b) = dayb; = d? = ged(a, b)?.

Problem 16. Let z, y, z be pairwise different positive integers such that
lem(z,y) —lem(z,2) =y — 2.

Prove that z | y and z | .

Proof. We see that y — z = kx for some integer k. Then
zy Ty Ty

1 = = = .
em(z, y) ged(z,y) ged(z,z+ kz)  ged(z,2)
Since
Tz
1 -
cm(z, 2) cd(@,2)’
we can rewrite the equation as
r(y—z) _
gedz,z) V7

Since y # z we deduce that = = ged(z, z) and so z | z. Since z | y — z, we conclude
z|y. O

Problem 17. Find all positive integers which can be written as lem(a, b) +
lem(b, ¢) + lem(c, a) for some positive integers a, b, c.

Proof. Clearly if we can write n in such a way then 2n also. By choosing b=c=1
we see that all odd integers satisfies problem assumptions.
Suppose that

2¥ — lem(a, b) + lem(b, ¢) + lem(c, a),
then k > 1. Take a = 24a;, b = 2Bb; and ¢ = 2€¢; with A > B > C and odd
ai, by, cy. Then
2k — 24(lem(ay, by) + lem(ay, ¢1)) + 28 lem(by, ¢1).

Dividing by 22 we wil lhave contradiction by dfferent parity of both sides. O

Example 18. Does there exist any integer a, b, ¢ such that abc+ 2, ab’*c+
2, abc? + 2 are perfect squares?

Proof. 1If any of a, b, c is even, one of these is 2 (mod 4) which is impossible. So, all
are odd. Therefore, a, b?, ¢? are all 1 (mod 4) and also, the given square numbers
are odd. So, bc+ 2, ca+2, ab+ 2 all are 2 (mod 4). Therefore, ab, bc, ca are all
3 (mod 4). So,

(abc)? = (ab)(bc)(ca) =3* =3 (mod 4),

contradiction. O



3. INTEGER SEQUENCES

Example 19. An integer sequence {a,},>1 is defined by
3
a1 =2, Gpy1 = [ianJ :

Show that it has infinitely many even and infinitely many odd integers.

Proof. Consider two cases:

(1) Let us suppose that the set of odd integers in a,, is finite. It means that
there is an m so that for all n > m, a,, is even. Then for all n > m

: ()
An41 = Ean SO Am+k = 5 A -

But if r is the greatest number such that 2" | a,, then a@,, 4,41 is not an
integer — contradiction!

(2) Now suppose that the set of even numbers in a,, is finite. That means we
can find an m so that for all n > m, a, is odd, which means that all the
numbers b,, = a,, — 1 are even integers. Then for all n > m

3a, —1 3 3
Uny1 = —5 — = E(an —1)+1 so bpy1= §bn7

but this case was discussed above.

Example 20. Determine all positive integers M such that the sequence
ap,ai,as, ... defined by
a0=M+% and ar4+1 = aglag| for k=0,1,2,...

contains at least one integer term.

Proof. The answer is all M > 1. Clearly M = 1 fails, as the sequence is just

3
going to be all 5 To show that all M > 1 work, we induct on vo(M — 1). If

ve(M —1) =0, then M is even, and we have that a; = M (M + }) is an integer as
desired. If vo(M — 1) = k > 0, then

1 OM24+M—-1 1 1
al=M(M+§)=f+§=.N+§,

and

ve(N — 1) = vy (M) = vy <(2M+3;(M_ 1)) =k—1,

so we can shift the sequence and reduce to the case of vo(M — 1) = k — 1. Hence,
ar+1 will be an integer as desired. Od

3.1. Kobayashi Theorem.

Theorem 21 (Kobayashi Theorem). If the set of prime divisors of the terms
of an unbound sequence (a,)n>1 is finite, then the set of prime divisors of
the terms of any translate (a, +t),>1, for 0 #t € Z, is infinite.
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Proof. Let p1,po,...,ps be the prime factors of the terms of the initial sequence,
and assume only finitely many prime factors gi,¢o,..., ¢, exist for the terms of
the translated sequence (these sets may overlap). For any positive integer N using
primes from the union of these sets, consider the largest cube K3 dividing it, so
N = M - K3, where M is made of (some of) those primes, at exponents 1 or 2,
therefore may only take finitely many values.

But now the equation (a, +t) = a, +t writes as Az® = By® +t, with A, B
taking finitely many values. According to Thue’s result (HIGH END FACT), each
of these equations has finitely many solutions. But this is in disaccord with the
fact that the sequences are infinite, and, being unbounded, provide infinitely many
solutions. O

Problem 22. Let a be a fix natural number . Prove that the set of prime
divisors of 22" + a for n = 1,2, ... is infinite.

Proof. Obvious from Kobayashi theorem. O

Proof. Assume that this set be finite i.e there exist py, po, - - - pr which they are all
the prime divisor of 22" + a. Now consider numbers

a2+a, a4+a, ...a2k +a
and assume r is a number such that none of this number is divisible by p! for all
i=1,2...,k

We know if n is sufficiently large then if we factorize 22" + a by p1,po, - - Pk
one of this prime number has a power bigger than r. Thus if we consider k£ + 1
consecutive number n which are sufficient big then by Pigeonhole theorem there
exist two of this number which one of these prime number (for example) p; has a
power bigger than r in both. Therefore p} | 22 +a and p} | 22" +a,for1 <s<k.

Thus pj | a®* + a - contradiction. O

Problem 23. Define the sequence of integers a,, n > 0 such that ag is equal
to an integer @ > 1 and a,,+1 = 2%» —1. Let A be the set such that = belongs
to A if and only if z is a prime and z divides a,, for some n > 0. Show that
the number of elements of A is infinite.

Proof. Apply Kobayashi theorem to the set {2°* | n > 0} — 1. O

Problem 24. Fedya writes from left to right an infinite sequence of nonzero
digits. After every digit, he considers the prime factors of the natural number
that is written until this moment. Prove that sooner or later one of these
prime numbers will be > 100.

Proof. Suppose the digit k was used infinitely many times, then we consider the
subsequence of natural numbers {a,}, but by Kobayashi one of

{an}, { a,,lg k}

has infinitely many prime factors, therefore the original sequence has infinitely many
prime factors. O




Problem 25. Let m,n be positive integer numbers. Prove that there exist
infinite many couples of positive integer nubmers (a, b) such that

a+b|am®+bn®, ged(a,b)=1.

Proof. Consider the sequence a; = (mn)k — n. By Kobayashi’s theorem, the set
of prime divisor of this sequence is infinite. Pick any prime that divides aj i.e.
p | (mn)* — n but not divides either m or n. Set k = r(p — t) + 1, then

(mn)* = (mn)"®~" D+ = (mn)t  (mod p).

Then, t < p. Nowset a =1¢,b=p—1t (a+b = p, so we can make sure that
(a,b) = 1), and them we have p | (mn)t —n, so p | (mn)® — n? = n%(m® — nb).
Thus a +b=p|m* —n®
Therefore m® = n® (mod a + b). From here we have
am® +bn® = am® + bm® =m*(a+b) =0 (mod a+b).

so we are done. Od

Problem 26. Let us consider positive integers p # q. Prove that there
are finitely many pairs (n + p, n + q) such that both terms only have prime
divisors from a finite set P of primes.

Proof. Aassume there are infinitely many such pairs, for indices n equal to ny, no, . ...
Then the terms of the unbounded sequence (nj + p)i>1 only have prime divisors
from the finite set P. By the Kobayashi theorem, there are infinitely many primes
dividing at least one term of the translated sequence (nx+¢q = (nx+p)+(q—p))k>1,
contradiction. O

4. POLYNOMIALS IN Z[X]
41. a—b| P(a) — P(b) trick.

Problem 27. Let W(z) be a polynomial with integer coefficients such that
there are two distinct integer at which W takes coprime values. Prove that
there exists an infinite set of integers such that the values W takes at them
are pairwise coprime.

Proof. Let these two integers be a, b, then by the Chinese Remainder Theorem we
can find X such that

X=a (mod W), X=b (modW(a)),

then obviously W (X) = W(a) (mod W (b)) and it’s the same for W(a) which im-
plies that W (X) is relatively prime to both W (a) and W (b). Now we can use again
Chinese Remainder Theorem and proceed inductively. O

Problem 28. Let f € Z[X]. Prove that there are no n > 3 distinct integers
T1,%9,...,T, such that f(z;) =z;_; fori € {1,2,...,n} (we put z¢ := z,,).
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Proof. Suppose that such numbers exist. Then
T — i1 = f(i41) — f(2:)
is divisible by z; 411 — z; for i € {1,2,...,n} (we put z,41 := z1). In particular
|z1 —zp| = |22 — 21| 2 |28 — 22| = ... = |Zpe1 — Zp| = |20 — 21|
. Since the first and last numbers are equal then
|z; — 21| = |zig1 — 24| forie {1,2,...,n}.

Now, observe that
n

D (@i —2:) =0,

=1

so we can find j € {1,2,...,n — 1} such that z;,; — z; and zj;9 — ;41 have
different signs. By the above equality we have z;; —z; = —(z;40 — z;41) — thus
T; = Tj42, contradiction. O

Problem 29. Find all polynomials f € Z[X] such that f(n) | 2" — 1 for
any positive integer n.

Proof. Let p | f(n) be a prime. Then

p=n+p—p|fin+p) - f(n),

sop| f(n+p). Hencep 2" —1and p | 2"tP —1sop | 2P —1 (p # 2). But we know
that p | 2P — 2 — contradiction. O

Problem 30. Let f € R[X] such that f(Z) C Z. Prove that there are
ap,ai, ..., a, such that for any real = the following equality holds

f(x)=an(z) +an_1(ni1) +m+a1(a1:) + agp.

Proof. We induct on degree n of f. For n = 1 it is obvious, assume n > 1. Consider
polynomial

9(z) = f(z +1) — f(=).
We see that g(Z) C Z and degg = n — 1. From the induction assumption we find
integers ag, a1, ...,a,_1 such that

f(r+1)—f(z)=g(z)=an_1(nf1) +an_2(ni2> +...+a1(f> + ap.

Fix m € Z and notice that

f(m) =£(0) +4(1) +9(2) + ... + g(m —1). (1)
Using (1) and well known identity

n n n n+1
(0)+(1)+...+(m_1)—< m ) for mne N
we see that

f(z) =a,,_1(:;) +an_2(nf 1) +...+%(T) + f(0) for z € Z.

Since the last equality holds for infinitely many arguments, it holds for any real
argument. O
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Problem 31. Let f € R[X] such that f(Z) C Z. Prove that for any integers
m and n the number

f(m) — f(n)

lem{1,2,...,d S
em{1,2,...,deg(f)} - — —~
is integer.

Proof. Assume deg f = ¢. Taking g(z) := f(z + £) we see that degg = ¢, g € Q[X]
and g(Z) C Z. It is enough to prove that

9(d) — g(0)

lem{1,2,...,¢} y

is integer, for d :=m — £.
By the above problem there are integers a1, as, ..., a, such that

o) = au(y) +aea(, )+ v (7) +n

thus it is enough to show that

lem{1,2,...,¢}- %(d)
i

is integer for i € {1,2,...,¢}. But

1 lem{1,2,....6} (d—1
lcm{1,2,...,£}-3<(ii> =m{f}-(i_l) cZ.

O
Problem 32. Let f € Z[X] with degf = n. Suppose that d divides
f(1), f(2),..., f(n). Prove that d | n!.
Proof. Applying problem |30 to polynomial g(z) := g we are done. O

Problem 33. Let aq,as,...,a, be different positive integers such that
a1as...a, | (k+a1)(k+a2)...(k+a,) fork>1.

Prove that
{al,a%---aan} = {1,2,...,77.}.

Proof. Applying problem [32] to polynomial
flz)=(z+a1)(z+a2)...(x+a,)

we see that
a1as . ..a, | nl.

Since aq, as,...,a, are different positive integers we are done. O
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4.2. Prime divisors of polynomials.

Problem 34. Suppose that f € Z[X]. Prove that the set of primes numbers
dividing at least one term of a sequance (P(n)),>1 is infinite.

Proof. Let {p1,p2,...,pn} be a set of all prime divisors. If f has free term equal

to 0, then statement is obvious. Assume that ag # 0. Take g(z) = f(a07) and

WLOG assume that ap = 1. Consider number A = p;ps...p,, then f(A) has a
prime divisor outside the set {py,pa,...,pn} — contradiction. O

Problem 35. Suppose that f € Z[X] and (a,),>1 is a strictly increasing
sequence of positive integers such that a,, < f(n) for any n. Prove that the
set of primes numbers dividing at least one term of a sequance (a,)n>1 is
infinite.

Proof. Notice that for k = (deg(f))~! < 1 we have

> 1
2 FaE =

n=1
Now, for any finite collection of primes pq,po,...,pNn We have:
k
Z kxq kzg kxN H Z ki H
1,20,z >0 P1 P2 j=1i>0 P3 j= 1PJ

If the statement does not hold, ten any term of a sequence {a,}5>; will be of the
form pk“”pgz"’ kIN for some z; € Q (i € {1,...,N}). Thus

1
Z (f(n) = z ak - Z kxy  kxo . kxn < co.

n T1,T9,.. ,:tN>Op1 Py --PN

Contradiction. O

5. THUE LEMMA

Example 36. Let A be the set of positive integers of the form a? + 2b2,
where a and b are integers and b # 0. Show that if p is a prime number and
p? € A, then p € A.

Proof. Let p? = a® + 2b? for some positive integers a and b. Reading the equation
modulo p yields a> = —2b% (mod p). Multiplying the inverse of b modulo p we get

(ab_l)2 =-2 (mod p).

Let ab~! = a (mod p). From Thue’s Lemma, we can find a pair (m,n) of
integers such that

n=am (modp) and 0<|m||n| < /p.

After squaring the congruence, we have

2 2, 2

n? = a’m? = —2m?

(mod p).
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In other words, n? + 2m? is divisible by p. Since 0 < |m|,|n| < ,/p we see that
0 < n?4+2m? < 3p, thus n24+2m? € {p, 2p}. If p = n®>+2m?, then p € A. Otherwise,
the relation 2p = n? + 2m? implies that n is even, so p = m? + 2 (%)2 c A. O

Example 37. Let S be a set of all positive integers which can be represented
as a? + 5b% for some coprime integers a,b. Let p be a prime number such
that p = 4n + 3 for some integer n. Show that if for some positive integer k
the number kp is in S, then 2p is in S as well.

Proof. From the condition we have property, there exist z,y € N such that p |
22 4+ 5y? thus p | a® 4+ 5 for @ := zy~! (mod p).
Using Thue’s lemma we find integers m,n such that
n=am (modp) and O0<|m||n| < /p.
Therefore
n?= :CQy_Qm2 = -—-bm
Since 4 { n2 4+ 5m? and 5 { n? 4 5m?, it follows that in fact n? 4+5m? € {p, 2p, 3p}.
(1) If p = 22 + 532 then p = 1( mod 4) — contradiction.
(2) If 2p = 22 + 5y then we are done.
(3) If 22 4 5y = 3p, then we consider the following subcases
ez =1 (mod3), y=1(mod3), then exist k,I € N such that z =
3k+1,y=3l+1, so

p=3k> +2k+531 +21) +2 —
— 2p=6k>+4k+ 10312+ 21) + 4=
= (k+2+50)+5(k—1)%
e rx=1 (mod3), y=—-1( mod 3) thenz=3k+1, y=3l—-1, so
2p = (k+2—50)% 4+ 5(k +1)%
e z=-1 (mod 3), y=1 (mod 3), thus z =3k — 1, y =31 + 1, hence
2p = (k —2 —51)2 4+ 5(k + 51)2.
e r=-1 (mod 3), y=—1 (mod 3), thus z =3k—1, y =3l —1, hence
2p = (k — 2+ 51) + 5(k — 51)2

2 (mod p), andso n?+5m? e {p,2p,3p,4p,5p}.

O

6. INTEGER FUNCTIONS, SEQUENCES

Problem 38. Let k be a positive integer. Find all functions f : N — N
satisfying the following two conditions:
e For infinitely many prime numbers p there exists a positve integer ¢
such that f(c) = p*.
e For all positive integers m and n, f(m) + f(n) divides f(m + n).

Proof. We prove by induction that f(n) = nf(1). Let ¢, co,..., be the sequence
of naturals such that f(c;) = p¥. Then one has

flei—(d+1)+ f(d+1) | f(e;) =pf
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and hence f(c; — (d+ 1)) = p! — f(d + 1) for some natural number j < k. By
pigeonhole, there are infinitely many i that gives us the same j and hence we can
assume that j is fixed since we can just consider that sequence instead. Similarly,

one has f(c; — k) = pg' — f(k) for some fixed natural number j'. Now we have

F) + flei = (d+1) | flei—d) = pl = f(d+1)+f(1) | 9] — F(d)-
Let j' = aj + b where 0 < b < j. Then our divisibility condition becomes

Pl — f(d+1)+ f(1) | (F(d+1) = F(1))°p} — f(d)
but since b < j and a < k, the RHS is less than the LHS when p; is large enough
which is a contradiction unless the LHS is zero. In which case one has
(f(d+1) = F(1))*p} = f(d)
and so b= 0, giving us (f(d+1) — f(1))* = f(d). On the other hand, one also has

FW)+fd)| fd+1)
giving us
(F(d+1) = FQ))° + £(1) | F(d+1).
Letting f(d+ 1) — f(1) = c, one has

"+ 1) [e+1(1)

which is impossible unless ¢®* = ¢, in which case either c=1ora=1. If ¢ =1,
then f(d) =1and f(1)+ f(d—1) | f(d) is impossible. Thus it must be that a =1
which gives us f(d+ 1) = f(d) + f(1). By induction, f(n) = nf(1) as desired.
Now clearly any function satisfying f(n) = nf(1) satisfies the second condition.
For the first condition, it is clear that one must have f(1) = 1. Hence the only
solution is f(n) =n for all n € N. O

Problem 39. Let Z- be the set of positive integers. Find all functions
f i Zso — Z~p such that

m® + f(n) | mf(m) +n

for all positive integers m and n.

Proof. Let m = n and we get m? + f(m) | mf(m) + m so we have
m® + f(m) < mf(m) +m
which rearranges to f(m) > m for all m > 2. Now let m = f(n) and we get
f()? + f(m) | £(F(m)) - f(n) +

so f(n) | n but f(n) > n, so the only viable possibility is f(n) = n for n > 2. For
n =1, we have f(1) |1, so f(1) = 1. It is easy to check that f(n) = n satisfies the
condition. O

Problem 40. Let N denote the set of positive integers. Find all functions
f N — N such that

n+ f(m) | f(n) +nf(m)
for all m,ne N
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Proof. Note that the condition implies n + f(m) | f(n) — n? (). In particular,
14+ f(1) | f(1) =1 so f(1) = 1. Obviously, f(n) = n? for all positive integers
satisfies the hypothesis, so supppose there is ng € N such that f(ng) # n3. We
have that ng + f(m) | f(no) — nd, so f(m) < ng + f(m) <| f(no) —nd |, i.e. fis
bounded. Take m = 1 in the initial relation to get n 4+ 1| f(n) + n or equivalently
n+ 1| f(n) —1 for all positive integers n. However, f is bounded, so we have that
f(n) =1 for all n big enough, say n > N.

Take n > N in the hypothesis and note that n + f(m) | 1 + nf(m) implies
n+ f(m) | f(m)? — 1. Take n large enough to infer that f(m) = 1 for all positive
integers m, which indeed is a solution of the problem. O

Problem 41. Let N denote the set of positive integers. Find all functions
f N — N such that

n+ f(m) | f(n) +nf(m)

for all m,n € N.

Proof. First note that 1+ f(1) | 2f(1) so f(1) = 1.

Suppose that there exists an integer k such that f(k) # k2. By the condition we
have k+ f(m) | k- f(k) so f is bounded. Furthermore we know that n+1 | f(n)+n
from m = 1 in the condition so f(n) =1 (mod n + 1) but since f is bounded we
have f(n) =1 for n sufficiently large.

To finish note that n+ f(m) | nf(m)+ f(m)? so n+ f(m) | f(m)?— f(n). Take a
very large n in the previous relationship to get n+ f(m) | f(m)? —1 thus f(m) =1
for all m € N and we get the solution f(n) = 1. If such a k doesn’t exist we get
the solution f(n) = n?. O

Problem 42. Find all functions f : N — N satisfying
f(mn) = lem(m, n) - ged(f(m), f(n))

for all positive integer m, n.

Proof. Let f(1) = k, and denote

by P(m,n). Then

P(m,1) = f(m)=m-ged(f(m),k), P(km,1) = f(km)=km - ged(f(km), ) = km,
kmn

ged(m, o) " £ (m). E'm) =

P(m,kn) — f(kmn) = lem(m, kn) - ged(f(m), k®n) =
— ged(f(m), k*n) = kged(m, kn).

Hence, k | f(m) = ged(f(m), k) = k.
Therefore, we have f(m) = km for all m.

7. MISCELLANEOUS

Problem 43. Let p, ¢ be two consecutive odd prime numbers. Prove that
p+q is a product of at least 3 natural numbers greater than 1 (not necessarily
different).
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Proof. Since p < q are odd, it means p < pT+q < g, with pT'H’ = ab integer, and
moreover, not a prime (sitting between two consecutive primes). Thus p + g = 2ab
with a,b > 1 (notice that for (p,q) = (3,5) we have p + ¢ = 22, so all three of the
factors may in fact be equal). O

Problem 44. Prove that for any prime number p > 3 exist integers z,y, k
that meet conditions: 0 < 2k < p and kp + 3 = z2 + 2.

Proof. Consider p + 1 numbers consist of

2 12 p—1 ? 2 2 p—1 2
0%,14,..., 5 and 3-0%3-1%...,3— —5 ) -

There must be two with same residue modulo p, and easy to see that they must
not come from same former/latter group. Hence, there exists 0 < i,j < ’E—l that
i2 =3 —j2 (mod p) — p|i%+ 52 —3. We also have

p-1)\? p’
.9 ) —
-3<2(— ) -3<—.
R L= ) <z
-2 22 3
Hence, k£ = % < g Also, 2 + j2 < 3 is impossible, this gives 0 < k,
done. O

Problem 45. Let z,y, z be positive integers such that IT"'I 4+ il =il
an integer. Let d be the greatest common divisor of =,y and z. Prove that

d < Jzy+yz+zz.

Proof. Let x = ad, y = bd, z = cd, then
41 +y+1 +z+1 2zt zz+yirryr+2ly+2y
Y z r TYZ N
d*(a’c + b%a + c2b) + xy + yz + 2z
d3abc ’

It follows that
Elry+yz+z2e = dE<zy+yzr+z22 — d< Jry+yz + 2z

Problem 46. Let a and b be two positive integers such that 2ab divides
a® + b2 — a. Prove that a is perfect square

Proof. Let d = ged(a,b), then (a,b) = (sd,td), where s and t are two positive

coprime integers. Consequently

a+b—-a _ (sd)? + (td)? — sd B d(s* +t?) —s
2ab  2-(sd)-(td) 2dst
Therefore s | dt? by yielding s | d since ged(s,t) = 1. Futhermore d | s by

7-1, which means d = s. Hence a = sd = s- s = 5%, i.e. a is a perfect square. O

(7-1) eN.
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Problem 47. Prove that the equation z* = y® + 22 has infinitely many
positive integer solutions z, v, z.

Proof. Let m,n be a positive integers such that 3 | m +n — 1.
For any integer ¢ we have that 3 | ¢® — ¢ = ¢(c — 1)(c + 1), so from the identity
mP4n®—1=m®>—m)+(n®—n)+(m+n-1)
we see that 3 | m® +n? — 1.
Now, take z = m® 4 n®. Then 3 | z — 1, so z®~! is a cube. Moreover

2T =1 zz—l — (m3 + n3)m:—1 _ m3ma:—l + n31:1:—1

i1s a sum of two cubes.

Example 48.

(1) Given a positive integer k, prove that there do not exist two distinct
integers in the open interval (k2, (k+ 1)2) whose product is a perfect
square.

(2) Given an integer n > 2, prove that there exist n distinct integers in
the open interval (k™, (k + 1)™) whose product is the n-th power of
an integer, for all but a finite number of positive integers k.

Proof.

(1) Suppose a,b € (k?,(k + 1)?) have a product which is a perfect square.
Write a = m2z and b = n%y where z,y are squarefree. Observe then that
x = y if ab is a perfect square, so a = m?z,b = n?z. WLOG b > a, so
n>m+1 = b—a>z(2m+ 1). However, we know

K <m?Pr=a, b=n’z<k®+2k+1

sob—a<2k—1. Wealsoknowm>%. Thus

b—aZar-(%+1) >2k—1,

contradiction, so a,b do not exist.
(2) We are done if there exists

n—1

E<af l<al ' <.<adtl < (k+1)",
such that a; are positive integers, k™ < ajas...an,—1 < (k+ 1)™ and
a1as .. .a,_1 differ than a:‘_l. Then the product of

n—1 n—1 n—1
ay y Q9 gy @y 1, @1G2...0571

is n-th power.

We claim that a; = [k7 7], and a;41 = a; + 1 forall 1 <i < n—2,
will work for sufficiently large k. Indeed, easy to see that we will obtain n
different numbers and the condition that needs to be fulfilled is (a3 +n —
2)"~1 < (k4 1)". The latter is true if

(k757 +n—1)"" < (k+ )" = n—1< (k+1)7T — k7T
which holds for sufficiently large k.
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Example 49. Determine all arithmetic sequences aj, as, . . . for which there
exists integer N > 1 such that for any positive integer k& the following
divisibility holds

aijag...ak I aN +1aN+2 --- AN +k-

Proof. Let a,, = ap + nd. If ag = 0 or d = 0, then {a, },>o satisfy given condition.
WLOG, assume that ag - d # 0 and ged(ag, d) = 1.
Notice that for £ > N we have

M = a-ag---an |ak+1 Q42 Ay N = R.
Since M > N, then exists prime p such that v,(M) > v,(N!).
Therefore, pick k such that p*»M) | M | ag + dk, then
0=R=d"N! (mod p*»M),

which is impossible since ged(p,d) = 1.
Finally only sequences satisfying given condition are such that ap =0 or d =0
l.e. a, = nd or a, = const. O

Example 50. Prove that there exist infinitely many positive integer pairs
(a,b) satisfying the condition ab | a® + b* + 1.

Proof. 1If (a,b) is a solution then both

b4 8
( +1 , b) and (a, a—+1)
a b

are solutions. We have therefore infinitely many solutions. O

Problem 51. Let b be a positive integer. Show that there exists integer
a > 0 auch that a > b and

T 0l [| EF AR AR R L

Proof. Let m = 3% 4 2% 4 1 and take e = v3(m) and f = v3(m). Since

1 if2]b

3P 41)=
v2 (3" +1) {2 215’
we have e < b.

Assume that f > b+ 1. Since 3*+! | m, we have
3b+26 + 1 Z 3b+1’
It follows that
2041>2.30>2.20=9204 90 = 1> 2%

contradiction. So we must have f < b.

Take a = ¢(m) + b and we claim that a satisfies problem’s assumptions. Indeed,
we can take ¢ € N with ged(c,6) = 1 for which m =2¢-3f . c.

Since

2¢(23) =1 (mod a - 37),
we have
2¢(™) =1 (mod a-3%).
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It follows that 2¢ = 2% (mod a - 2° - 37), which implies 2¢ = 2° (mod m) because
e < b. Similarly, we have 3¢ = 3* (mod m). Thus,

342" +1=3"4+2"+1=0 (mod m).



