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INTRODUCTION

This thesis is devoted to the study of arithmetic and geometric properties of Calabi-Yau

manifolds obtained as a quotient of Calabi-Yau threefold by an action of a finite group.

We compute Hodge numbers of Calabi-Yau threefolds of Borcea-Voisin type using

stringy Euler characteristic and Chen-Ruan cohomology. We construct new Calabi-

Yau threefolds as a quotient of double octic threefold by an automorphism subgroup.

Moreover we give a sufficient condition for rigidity of resulting manifolds. Consequently,

by choosing examples of modular double octic threefolds satisfying this criterion, we

obtain new modular rigid Calabi-Yau threefolds, which yield modular rigid realization

of two cusp forms of weight four.

Our research is motivated by (hypothetical) applications of Calabi-Yau threefolds

to physics in the so called string theory and inspiring with that theory, one of the

most famous mathematical problem known as Mirror Symmetry Conjecture. Many

families of Calabi-Yau threefolds which are important in this subject, were constructed

via finite quotients of Calabi-Yau threefolds by a subgroup of automorphism group

generated by non-symplectic automorphisms.

In Chapter 1 we introduce the notation and basic facts concerning Hodge theory of

Kähler complex manifolds X. According to this theory, the following Hodge decompo-
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sition holds for each natural k :

Hk(X,C) =
⊕
p+q=k

Hp,q(X),

with finite dimensional vector spaces Hp,q(X), satisfying certain number of conditions.

The dimensions hp,q(X) := dimHp,q(X), called the Hodge numbers of X, are one

of the main invariants of complex manifolds, which may be visualized in the Hodge

diamond. We shall give formulas for the Hodge numbers of a product of two manifolds

(Künneth’s formula) and for a blow-up of a manifold along a smooth submanifold. At

the end of this chapter we briefly summarize basic results in deformation theory of

compact complex manifolds that we shall need in our considerations.

The second Chapter is devoted to the study of Calabi-Yau manifolds, i.e. compact

complex Kähler manifolds X having trivial canonical bundle and H i(X,OX) = 0, for

0 < i < dimX. Triviality of the canonical bundle is equivalent to existence of a

nowhere vanishing holomorphic form σ ∈ H0(X,Ωn
X), where ΩX is the holomorphic

cotangent bundle of X, and n = dimX. We start with a description of the Hodge

diamond of a Calabi-Yau manifold. Then we shall explain unobstructedness of the

infinitesimal deformations and formulate the simplest version of the Mirror Symmetry

Conjecture.

In the second part of this chapter we study K3 surfaces which are two dimensional

Calabi-Yau manifolds. The study of non-symplectic involution on K3 surfaces using

lattice theory, pioneered by V. V. Nikulin started new area of research, the classifi-

cation of all non-symplectic automorphisms and description their singular loci is still

incomplete and provides many examples of Calabi-Yau manifolds.

In Chapter three we focus on quotients of projective varieties X by an action of

a finite group G acting on X. The resulting variety X/G possesses a very interesting

(orbifold) structure, which is often singular. As we are mainly interested in Calabi-Yau

manifolds, the natural question arises here: when does the given construction produces
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a smooth Calabi-Yau model of X/G? To this end we need a resolution of singularities

which does not change a canonical bundle of X which are called crepant. Unfortunately

this type of resolutions does not exist in every dimension and if it does, then not for

all kinds of singularities. In dimensions two and three, by works of Klein and Roan

such a resolution always exists. Moreover, from these results one can predict much

deeper properties of crepant resolutions of finite quotients of Cn in higher dimensions,

together with possible connection with other areas of mathematics it is known as

McKay correspondence.

Next part of this chapter is devoted to a cohomology theory for finite quotients.

W. Chen and Y. Ruan introduced

H i,j
orb(X/G) :=

⊕
[g]∈Conj(G)

 ⊕
U∈Λ(g)

H i−age(g), j−age(g)(U)

C(g)

,

where Conj(G) is the set of conjugacy classes of G, C(g) is the centralizer of g, Λ(g)

denotes the set of irreducible connected components of the fixed points set of g ∈ G and

age(g) is an integer associated to a matrix corresponding to linearized action of g.Main

advantage of this formula is that it provide a method of computing Hodge numbers of

a crepant resolution of finite quotient, without giving an explicit construction of that

resolution. In fact

dimH i,j
orb(X/G) = hi,j(X/G

:
),

where X/G
:

is a crepant resolution of finite quotient X/G.

We end this chapter with a definition of stringy Euler characteristic introduced by

physicists and motivated by string theory. This formula, just like Chen-Ruan cohomol-

ogy, may be used to compute the Euler characteristic of a crepant resolution of finite

quotients.

The fourth chapter aims to the Borcea-Voisin construction of Calabi-Yau threefolds

which produces important examples in context of mirror symmetry. Main idea is to

start with a K3 surface S and an elliptic curve E, both admitting non-symplectic
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involutions αS and αE, respectively, and consider the quotient (S×E)/(αS×αE). The

crepant resolution (S × E)/〈αS × αE〉
:

is a Calabi-Yau threefold with Hodge numbers

h1,1 = 11 + 5N ′ −N and h1,2 = 11 + 5N −N ′,

where N is the number of curves in Fix(αS) and N ′ denotes the sum of genera of

all curves in fixed locus. Voisin used Nikulin’s classification to show that constructed

threefolds have a “mirror partner” for all but one of the examples with N ′ 6= 0.

A. Cattaneo and A. Garbagnati generalized the Borcea-Voisin construction allow-

ing non-symplectic automorphism of a K3 surfaces of higher orders. They computed

Hodge numbers of resulting threefolds by careful study of an explicit construction of a

crepant resolution. We shall compute the Hodge numbers using orbifold cohomology

and stringy Euler characteristic. These computations are the first main result of the

present thesis. Our method based on orbifold formulas does not involve an explicit

construction of a crepant resolution. We need only existence of such resolution, which

is guaranteed by the Roan theorem. The main advantage of our approach is that the

computations are carried out on S ×E and they are much shorter and cleaner, as the

construction of a crepant resolution proposed by Cattaneo and Garbagnati is technical

and complicated.

In the last chapter we study the modularity of finite quotients of double octic Calabi-

Yau threefolds. We start by the introducing general definitions, which are needed to

study arithmetical concepts of projective varieties defined over Q. We shall define a

zeta function of a variety and state remarkable conjectures observed by A. Weil known

as Weil Conjectures. In fact Weil proved the conjectures in the case of curves. The full

generality was obtained by the works of B. Dwork, P. Deligne and A. Grothendieck.

The next section is devoted to étale cohomology developed by Grothendieck, and

used in his proof of the part of Weil Conjectures. That tool together with Weil Con-

jectures allow to define L-series L(X, s) of Calabi-Yau manifold X. Moreover there is
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a relation between coefficients of Dirichlet expansion of L(X, s) and number of Fp-

rational points of X for any prime p. After that we define modular forms and associate

L-function.

Finally, using the above tools we state what the modularity means in the case of

Calabi–Yau threefolds. The definition is inspiring by Taniyama-Shimura conjecture,

which predicted a modularity of elliptic curves. Taniyama-Shimura-Weil conjecture

was obtained by A. Wiles and it implies the Fermat Last Theorem. Rigid Calabi-Yau

threefolds are also modular although the question asked by B. Mazur and D. van Straten

— which modular forms can be realized as a modular form of some rigid Calabi-Yau

threefold, is still open.

In the further part we shall introduce double octic Calabi-Yau threefolds, which

are a double cover of P3 branched along an octic surface. The study of such double

coverings was initiated by C. H. Clemens. S. Cynk and his co-authors extended the

class of branch locus and studied new aspects.

The final part of this chapter and present thesis consists of authors main results.

By studying a symplectic involutions φ acting on double octic threefolds X we give

a sufficient conditions for Fix(φ) to not contain a curve of positive genus (Proposi-

tion 5.3.1). This proposition applied to suitably chosen examples from Meyer’s list of

arrangements produces new quotients varieties X/φ, which are rigid Calabi-Yau three-

folds. As a consequence of that construction we find new rigid realizations of weight 4

cusp forms 96k4B1 and 96k4E1 (Theorem 5.3.3).
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CHAPTER 1

PRELIMINARIES

In this chapter we shall collect the information from the Hodge theory that we need

in further parts of present thesis. We shall recall the Hodge decomposition for Kähler

manifolds and basic properties of the Hodge diamond. Then we state Künneth’s for-

mula for Hodge numbers and description of Hodge numbers of blow-ups. We end this

section by summarizing very briefly the results from deformation theory of complex

manifolds.

1.0.1 The Hodge decomposition

The centrallll objects in Hodge theory are Kähler manifolds, which are differentiable

manifolds endowed with a complex structure and a Riemannian metric satisfying a

certain compatibility condition. We reefer to [Huy05] for a complete introduction to

Kähler manifolds.

Let X be a complex manifold with the induced complex structure I.

Definition 1.0.1. A Riemannian metric g on X is an hermitian structure on X if for

any point x ∈ X the scalar product gx on TxX is compatible with the almost complex

structure Ix. The induced real (1, 1)-form ω := g (I( ), ( )) is called the fundamen-

tal form.
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10 Chapter 1. Preliminaries

Definition 1.0.2. A Kähler structure (or Kähler metric) on X is an hermitian struc-

ture g for which the fundamental form ω is closed, i.e. dω = 0. The complex manifold

endowed with the Kähler structure is called a Kähler manifold.

Any projective variety is a Kähler manifold. The converse statement is also true

under some assumptions:

Theorem 1.0.3 (Beauville). If X is a compact, Kähler variety such that

H2(X,OX) = 0, then X is projective.

Let X be a complex, compact, projective variety of dimension dimX = n. For any

0 ≤ p, q ≤ n we define vector spaces Hp,q(X) with the following properties:

1. Vector spaces Hp,q(X) are finite dimensional.

2. (Dolbeault theorem) There exists an isomorphism

Hp,q(X) ' Hq(X,Ωp
X).

3. (The Hodge decomposition)

Hk(X,C) =
⊕
p+q=k

Hp,q(X).

4. (Serre duality) For any vector bundle E on X

Hp(X,E) ' Hn−p(X,E∨ ⊗ ωX)∨,

in particular

Hp,q(X) ' Hn−p,n−q(X)∨.

5. (The Hodge’s symmetry)

Hp,q(X) = Hq,p(X).
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Remark 1.0.4. The vector space Hp,q(X) is called the Dolbeault cohomology of X and

Hp,q(X) =
ker
(
∂ : Ap,q(X)→ Ap,q+1(X)

)
im
(
∂ : Ap,q−1(X)→ Ap,q(X)

) ,
where Ap,q are sheaves of sections of complex vector bundles

∧p,q
X :=

∧p (
T 1,0X

)∗ ⊗C
∧q (

T 0,1X
)∗
,

where

TCX = T 1,0X ⊕ T 0,1X

is a direct-sum decomposition induced by a complex structure on X.

Since Hp,q(X) is finite dimensional, the number hp,q(X) := dimCH
p,q(X) is well

defined and it is called the Hodge number of X. Hodge numbers are one of the most

important invariants of a complex variety.

The Hodge numbers hp,q(X) may be visualized as the Hodge diamond, which has

the following shape:

h0,0

h1,0

· · ·

hn−1,0

hn,0

h0,1

···

h0,n−1

h0,n

hn,1 h1,n

··· · · ·

hn,n−1 hn−1,n

hn,n

··
·

··
·

··
·

··
·

h1,n−1hn−1,1 · · ·· · ·

Serre duality shows that the Hodge diamond is invariant under central reflection.

Moreover, by the Hodge symmetry the Hodge diamond is invariant under the reflections

in diagonals.
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The Hodge decomposition yields the following formula for Betti numbers

bk(X) =
∑
i+j=k

hi,j(X),

hence k-th Betti number is the sum of numbers in k-th row of the Hodge diamond.

Consequently the Euler characteristic of X may also be written in terms of Hodge

numbers

(0-1) χ(X) :=
2n∑
k=0

(−1)kbk(X) =
2n∑
k=0

(−1)k
∑
i+j=k

hi,j(X).

1.0.2 The Künneth formula

In this section we recall Künneth’s formula describing the de Rham cohomology of

a product of complex manifolds, for a reference see the classical book [BT82] of R.

Bott and L. W. Tu.

Theorem 1.0.5. Let X and Y be a complex manifolds. Then for all n ≥ 0 the following

formula holds

Hn(X × Y,C) =
⊕
p+q=n

Hp(X,C)⊗Hq(Y,C).

As the Hodge decomposition is compatible with Künneth’s formula we get the

following corollary:

Corollary 1.0.6. If X and Y are complex manifolds, then

hr,s(X × Y ) =
∑

r1+r2=r
s1+s2=s

hr1,s1(X) · hr2,s2(Y ).

1.0.3 The Hodge numbers of blow-ups

Let X be a Kähler manifold, and Y ⊂ X be a submanifold. The blown-up manifold

BlY (X) is still Kähler (see [Voi02], proposition 3.24). Let E = π−1(Y ) be the excep-

tional divisor, where π : BlY (X) → X is a blow-up. Then E is a projective bundle of

rank r − 1, where r = codimY.
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Theorem 1.0.7 ([Voi02], Theorem 7.31, p. 180). For any k ≥ 0, there exists isomor-

phism

Hk(BlY (X),C) ' Hk(X,C)⊕

(
r−2⊕
i=0

Hk−2i−2(Y,C)

)
.

To obtain the Hodge numbers of BlY (X) it is enough to compare the above theorem

with the Hodge decomposition.

1.0.4 General results from deformation theory

Deformation theory is the effect of fundamental work of K. Kodaira and D. C. Spencer.

Their deformation techniques had received many deep applications in the Italian school

of algebraic geometry. We shall briefly sketch the main definitions and statements in

this theory. We refer to [Har10, GHJ03, Kod86] for a solid introduction to deformation

theory.

Let X be a compact complex manifold. A deformation of X consists of a smooth

proper morphism X → S, where X and S are connected complex spaces and X ' X0,

where 0 ∈ S is a distinguished point (we consider only a germ (S, 0)). An infinitesimal

deformation of X is a deformation with the base space S = Spec(C[ε]).

Theorem 1.0.8 ([GHJ03], Proposition 22.1). The isomorphism classes of infinitesi-

mal deformations of a compact complex manifold X are parametrized by elements in

H1(X, TX).

Definition 1.0.9. A deformation X → (S, 0) of X is called universal if for any other

deformation X ′ → (S ′, 0′) there exists an unique morphism φ : S → S ′ with φ(0) = 0′,

such that X ′ ' φ∗(X ).

The universal family is unique up to an isomorphism, and it is denoted by

X → Def(X); space Def(X) is usually called the Kuranishi space.
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Theorem 1.0.10 (Kuranishi). Let X be a compact, complex manifold with

H0(X, TX) = 0, then a universal deformation of X exists and it is universal for any of

its fibers.

Theorem 1.0.11 (Kodaira, Spencer). Tangent vectors to (Def(X), 0) at 0 are naturally

identified with classes in H1(X, TX) = 0. If also H2(X, T ) = 0 then Def(X) can be

identified with an open neighbourhood of 0 in H1(X, TX) = 0, in particular Def(X) is

smooth.

Definition 1.0.12. Let X be a compact complex manifold that admits a universal

deformation X → Def(X). We say that the deformations of X are unobstructed if

dim T0Def(X) = dimDef(X).



CHAPTER 2

CALABI-YAU MANIFOLDS

Calabi-Yau threefolds are subject of intensive studies, motivated by their possible ap-

plications to physics in the so called string theory. There are several inequivalent

definitions of Calabi-Yau varieties (see chapter 1 of [GHJ03]). According to Yau’s

proof of Calabi conjecture in [Yau77], it can be said that all definitions are “almost”

equivalent. Calabi-Yau manifolds have been studied also due to their appearance in

the famous Beauville-Bogomolov decomposition theorem.

String theory predicts that our universe is not just four-dimensional (time-space),

but ten-dimensional. The extra six dimensions or complex three “compactify” to

a Calabi-Yau variety. The most famous unsolved mathematical problem inspired by

string theory is the Mirror Symmetry Conjecture. String theorists observed that if

“strings” were to exist, then they must come in pairs. Consequently, for any non-rigid

Calabi-Yau threefold X there should exists a “mirror partner” Y of X. Mathematicians

reformulate this phenomenon into symmetries between Hodge diamonds of X and Y.

Calabi-Yau manifolds can be considered as the three-dimensional counterpart of

elliptic curves, thus apart from the motivations coming from physics, Calabi-Yau man-

ifolds provide a very interesting framework to study from the point of view of classi-

fication of algebraic threefolds and arithmetic. After proving Taniyama-Shimura-Weil
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16 2.1. General information

conjecture by A. Wiles in [Wil95], mathematicians started to study a correspondences

between Calabi-Yau threefolds and certain modular forms.

K3 surfaces which are two-dimensional Calabi-Yau manifolds provides beautiful and

rich theory. The study and classification of non-symplectic automorphisms pioneered

by V. V. Nikulin in [Nik79a] is and important subject of research.

In the present chapter we define Calabi-Yau manifolds and summarize classical

results concerning these manifolds. Main part of this chapter will be devoted to study

K3 surfaces and particular kinds of automorphisms acting on them.

2.1 General information

In this section we define a Calabi-Yau manifold and describe its Hodge diamond in

low dimensions. Also, we formulate simplest version of the famous mirror symme-

try conjecture. There are many inequivalent definitions of Calabi-Yau manifolds, for

a reference see [Joy00].

Definition 2.1.1. A Calabi-Yau manifold X is a complex compact Kähler d-fold X

satisfying

(i) KX = OX ,

(ii) H i(X,OX) = 0 for 0 < i < d.

Remark 2.1.2. The above definition is equivalent to the following conditions

(i) there are no global holomorphic i-forms on X,

(ii) there exists a nowhere vanishing holomorphic d-form on the manifold X.

Remark 2.1.3. For a Calabi-Yau manifold X of dimension d,

hi,0(X) = h0,i(X) = 0, for 0 < i < d



Chapter 2. Calabi-Yau manifolds 17

and

h0,0(X) = h0,d(X) = hd,0(X) = hd,d(X) = 1.

Remark 2.1.4. A non-trivial generator ωX of Hd,0(X) ' C is called a period of X.

For any automorphism αX ∈ Aut(X), the induced mapping α∗X acts on Hd,0(X) and

α∗X(ωX) = λαωX , for some λα ∈ C∗. We shall analyse a period of Calabi-Yau manifold

in the case of dimension two.

Calabi-Yau manifolds are “building blocks” of compact Kähler Ricci flat manifold,

which follows from the famous Beauville-Bogomolov decomposition theorem:

Theorem 2.1.5 (Beauville-Bogomolov, [Bea83, Bog74]). Let X be a compact Kähler

Ricci flat manifold. Then X has a finite unramified cover Y with

Y ' T×
∏
i

Hi ×
∏
i

Ci,

where

(i) T is a complex torus i.e. Cn/Λ, where Λ ' Z2n is a lattice in Cn.

(ii) Each Hi is a Hyperkähler manifold i.e. simply connected holomorphic symplectic

manifold with dimH2(Hi,OHi) = 0.

(iii) Each Ci is a simply connected Calabi-Yau manifold.

By Yau’s proof of Calabi’s conjecture (see [Yau77]) having a Ricci flat metric is

equivalent to having trivial first Chern class.

Let us recall the fundamental theorem due to V. Batyrev in [Bat99]:

Theorem 2.1.6. For any birational n-dimensional Calabi-Yau manifolds X and Y the

Hodge numbers are equal.
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Examples 2.1.7.

1. A Calabi-Yau manifold of dimension one is an elliptic curve with Hodge diamond:

1

1 1

1

2. A two dimensional Calabi-Yau manifold is called a K3 surface, with the following

Hodge diamond:

1

0

1

0

20

0

1

0

1

3. A three dimensional Calabi-Yau manifold X is called Calabi-Yau threefold. From

4 and 5 it follows that the Hodge diamond of X has the following shape:

1

0

0

1

0

h1,1

h2,1

0

0

h1,2

h2,2

0

1

0

0

1

Moreover from (0-1) we obtain a brief formula for Euler characteristic of X i.e.

χ(X) = 2
(
h1,1(X)− h2,1(X)

)
.

Conjecturally, the number |χ(X)| should be bounded, and currently the maximal

known is 960 (it is achieved by a hypersurface in the weighted projective space

P(1, 1, 12, 28, 42)). However there is also conjecture that there are infinity many

families of Calabi-Yau threefolds.
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Note that for a Calabi-Yau threefold X:

h1,1(X) = rank Pic(X) and h2,1(X) = dimDef(X).

Theorem 2.1.8 ([Ran92]). If X is a Calabi-Yau manifolds, then deformations of X

are unobstructed.

Theorem 2.1.9 (Bogomolov, Todorov). For n-dimensional Calabi-Yau manifold the

Kuranishi space Def(X) exists and

dimDef(X) = hn−1,1(X).

Bogomolov-Todorov theorem gives raise to the following definition:

Definition 2.1.10. A Calabi-Yau manifold X is called rigid if h1TX = 0.

Physicists have discovered a phenomenon for Calabi-Yau threefolds, which is called

a Mirror Symmetry. In the simplest version, it predicts that for a given non-rigid

Calabi-Yau threefold X there exists a Calabi-Yau threefold Y such that

h1,1(X) = h2,1(Y ) and h2,1(X) = h1,1(Y ).

In particular it implies that χ(X) = −χ(Y ).

There are many examples of Calabi-Yau threefolds satisfying mirror symmetry con-

jecture, for example Borcea-Voisin Calabi-Yau 3-folds, which will be defined in the fur-

ther part of present thesis. The largest amount of examples comes from the construc-

tion given by V. Batyrev in [Bat94]. He started with a reflexive polytope in dimension

4, by taking corresponding toric 4-fold, he considered a generic anti-canonical section

and constructed in this way a Calabi-Yau orbifold. After that, he found a smooth

desingularization of resulting variety, and obtained Calabi-Yau variety.

It is worth to mention that there is more complicated (surprising) reformulation of

mirror symmetry due to M. Kontschevich, which involves notion of derived and Fukaia

categories of variety. That version of mirror symmetry were intensive studied in recent

years; for a good reference in this topic, see [Huy06].
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2.2 K3 surfaces

Two dimensional Calabi-Yau manifolds are called K3 surfaces. André Weil named

them in honour of three algebraic geometers: Kummer, Kähler and Kodaira, and the

mountain K2 in Kashmir.

Note that definition 2.1.1 tells nothing about the fundamental group. It can be

shown that any K3 surface is deformation equivalent to a quartic hypersurface in P3, in

particular all K3 surfaces are diffeomorphic and simply-connected (see [BHPVdV04]).

Examples 2.2.1.

1. LetX be a smooth quartic surface in P3, then ωX ' OX by the adjunction formula

(see [Har77], chapter 5, proposition 1.5). Moreover, from the exact sequence

0 −→ OP3(−4) −→ OP3 −→ OX −→ 0,

by taking cohomology, we get that h1(X,OX) = 0.

2. More generally, a smooth complete intersection of type (d1, . . . , dn) in Pn+2 is

a K3 surface iff
n∑
i=1

di = n+ 3. Assuming that the complete intersection is non-

degenerate i.e. di ≥ 2, we get three possibilities:

n = 1 d1 = 4 P3

n = 2 (d1, d2) = (2, 3) P4

n = 3 (d1, d2, d3) = (2, 2, 2) P5

3. Consider a double cover π : X → P2 branched along a smooth curve S of degree

6. Then π∗OX = OP2 ⊕OP2(−3), hence:

H1(X,OX) = H1(P2, π∗OX) = H1(P2,OP2)⊕H1(P2,OP2(−3)) = 0.

Canonical bundle formula for branched coverings (see [BHPVdV04]) implies that:

ωX ' π∗(ωP2 ⊗O(3)) ' OX ,

thus X is a K3 surface.
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4. Let A be an Abelian surface and let ι be the involution of A given by

ι : A 3 a→ −a ∈ A. The fixed locus of ι consists of 16 two-torsion points. Let

π : Ã → A be the blow-up of these 16 points. The involution ι extends to an

involution τ of Ã; denote by X the quotient X = Ã/〈τ〉. Then X is a K3 surface,

called the Kummer surface (for a details see [Bea96]).

Remark 2.2.2. U. Persson in [Per85] investigated similar construction to (3) with branch

locus consisting of a sum of six lines. As a result we get a K3 surface with large Picard

number, in particular a singular K3 surface (ρ = 20). In the last chapter of this thesis

we consider double cover of P3 branched along eight planes, which are Calabi-Yau

threefolds.

2.3 Automorphisms of K3 surfaces

An automorphism αS ∈ Aut(S) of a K3 surface S is called symplectic if it preserves

a period of S i.e. α∗S(ωS) = ωS. If αS does not preserve a period then it is called

non-symplectic. If additionally αS is of finite order n and α∗S(ωS) = ζnωS, where ζn is

a primitive n-th root of unity, then it is called purely non-symplectic.

Remark 2.3.1. If αS is a non-symplectic automorphism of order n, then its action on

a period is given by an n-th root of unity. Moreover αS is purely non-symplectic if its

every power is non-symplectic.

Lemma 2.3.2. Let X be a complex m-dimensional manifold and let αX be an automor-

phism of X of order n. Then for any fixed point x of αX there exists a local holomorphic

coordinate system (z1, z2, . . . , zm) around x and n-th roots of unity λ1, λ2, . . . , λm such

that αX(z1, z2, . . . , zm) = (λ1z1, λ2z2, . . . , λmzm) and α∗X(ωX) = λ1λ2 · . . . · λmωX .

Proof. We can assume that x = 0 and consider neighbourhood 0 ∈ U ⊂ Cm. Following
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[Car57], for y ∈ U define:

f(y) :=
1

n

n∑
i=1

(d0αX)−i ◦ αiX(y),

then d0f =
1

n

n∑
i=1

(d0αX)i · (d0αX)−i ≡ id, hence (z1, z2, . . . , zm) := f(y) is a local

coordinate system around 0.

Note that:

f ◦ αX(y) =
1

n

n∑
i=1

αi+1
X (y) · (d0αX)−i = d0αX · f(y),

thus with respect to a new coordinates system (z1, z2, . . . , zn) we can assume that αX

is linear. Since αX is of finite order, after linear change of coordinates it is represented

by a matrix with roots of unity on diagonal.

Corollary 2.3.3. Let αS be a purely non-symplectic automorphism of order n of a K3

surface S. Then the action of αS may be locally linearized and diagonalized at a fixed

point p ∈ Fix(αS), so the possible local actions are(
ζt+1
n 0
0 ζn−tn

)
, for t = 0, 1, . . . , n− 1.

Clearly, if t = 0, then p belongs to a smooth curve fixed by αS, otherwise p is an isolated

point.

Theorem 2.3.4 ([AST11], Lemma 2.2, p. 5). Let S be a K3 surface and let αS be a

non-symplectic automorphism of S of order n. Then there are three possibilities

1. Fix(αS) = ∅; in this case n = 2,

2. Fix(αS) = E1 ∪E2, where E1, E2 are disjoint smooth elliptic curves; in this case

n = 2,

3. Fix(αS) = C ∪ R1 ∪ R2 ∪ . . . Rk−1 ∪ {p1, p2, . . . , ph}, where pi are isolated fixed

points, Ri are smooth rational curves and C is the curve with highest genus g(C).
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Proof. From the corollary 2.3.3 it follows that the fixed locus of αS consists of disjoint

curves and isolated points. Denote fixed curves by R0, R1, . . . , Rk−1.

Suppose that g(R0) > 1. The adjunction formula yields R2
i = 2g(Ri) − 2, hence

R2
0 > 0. Since curves Ri and Rj are disjoint, then RiRj = 0 for i 6= j, thus the Hodge

index formula implies that 2g(Ri) − 2 = R2
i ≤ 0 for any 1 ≤ i ≤ k − 1. However Ri

is an effective divisor, so g(Ri) = 0. Therefore at most one curve has genus strictly

bigger than 1, and if there is such a curve, then all remaining curves are rational.

Suppose that g(R0) = 1. Then other curves may be elliptic or rational. Suppose

that R0 and R1 are elliptic. They give raise to elliptic fibration π : S → P1 which is

αS-invariant (see [ST17]). Local action of αS on R0 is given by α∗S(x, y) = (x, ζny),

hence αS descends to an automorphism of P1. The automorphism of P1 has two fixed

points, which implies that Fix(αS) consists of R0 and R1.

At this moment a natural problem arrives: classify all non-symplectic automor-

phisms (of a K3 surface) of given order. In the case of elliptic curve E, by the well

known result (see [Sil09]) the automorphism group of E has order dividing 6. For K3

surfaces the problem is much more difficult.

Theorem 2.3.5 (Nikulin, [Nik79a]). Let S be a K3 surface. If αS is a non-symplectic

automorphism of S of finite order n, then φ(n) ≤ 21, where φ is the Euler φ-function.

In particular, n ≤ 66 and when αS has prime order, its order is at most 19.

Therefore the group of purely non-symplectic automorphisms is finite. All the

orders of such groups have been determined in [MO98] by N. Machida and K. Oguiso.

A non-symplectic automorphisms of prime order have been classified by M. Artebani,

A. Sarti, S. Taki in [AST11]. Some authors have started to investigate non-symplectic

automorphisms of composite order: D. Al Tabbaa and A. Sarti in [TS17] (order 8), J.

Dillies in [Dil12b] (order 6), A. Sarti and A. Garbagnati in [GS13] (order 2p, where p
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is a prime) and J. Keum in [Keu15] (order 66). Also, S. Brandhorst in [Bra17] pursued

the question when an automorphism determines a K3 surface up to an isomorphism.



CHAPTER 3

QUOTIENTS OF PROJECTIVE VARIETIES

Quotients of projective varieties by a finite group action provide many examples of

Calabi-Yau manifolds. In most cases quotients are singular and we have to perform

a resolution of singularities as a second step of the construction. If we want to get

a Calabi-Yau manifold as a result we have to consider a crepant resolution of singular-

ities. The term “crepant” was coined by M. Reid by removing the prefix “dis” from the

word “discrepant”, to indicate that the resolutions have no discrepancy (see [CR00]) in

the canonical class. Unfortunately, such a resolution exists only for very special types

of singularities. Moreover in those cases it is difficult to construct them.

In this chapter we shall define crepant resolutions and state basic results ensuring

existence of such resolution for certain types of singular varieties. Also, we shall recall

a definition of Chen-Ruan cohomology and orbifold (stringy) formula.

3.1 Crepant resolution

Let G be a finite group acting on a projective complex variety X. In points corre-

sponding to a points of X with non-trivial stabilizer, the projective variety X/G may

be singular. To avoid this problem we need to find a resolution of singularities of X/G.

25



26 3.1. Crepant resolution

Definition 3.1.1. Pair (X̃, π), where π : X̃ → X is a proper, regular and birational

map and X̃ is a smooth algebraic variety, is called a resolution of singularities of X if

π
∣∣
π−1(Reg(X))

: π−1 (Reg(X))→ Reg(X)

is an isomorphism.

By Hironaka’s desingularization theorem, any complex algebraic variety X has

a desingularization. As we want to control the canonical divisor, we shall now restrict

considerations to the case, where X admits canonical line bundle i.e. has Gorenstein

singularities (for a details see [Rei87]).

Definition 3.1.2. Let X be a complex algebraic variety with Gorenstein singularities,

and let (X̃, π) be a resolution of X. We say that that X̃ is a crepant resolution of X if

π∗(KX) = KX̃ .

Because singularities of a complex orbifold X are locally isomorphic to a quotient

variety Cn/G for a finiteG ⊆ Gln(C), any crepant resolution ofX are locally isomorphic

to a crepant resolution of Cn/G. Thus the study of existence of a crepant resolution of

variety Cn/G is really important.

In dimension 2, a crepant resolution of a quotient by a subgroup of Sl2(C) always

exists and is unique as follows from a classical result of Klein.

Theorem 3.1.3. Let G be any finite subgroup of Sl2(C). Then surface C2/G admits

an unique crepant resolution.

Surfaces C2/G are called Kleinian singularities or Du Val surface singularities.

There is 1-1 correspondence between non-trivial finite subgroups G ⊂ Sl2(C) and the

Dynkin diagrams of type Ak(k ≥ 1), Dk(k ≥ 4), E6, E7 and E8.

The correspondence between Kleinian singularities C2/G, Dynkin diagrams and

other areas of mathematics is known as the McKay correspondence.
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In dimension 3 situation is a little bit more subtle. A crepant resolution always

exist but it is not unique. Any two crepant resolutions are related by a sequence of the

so called flops (for a details see [Kol89]).

Theorem 3.1.4 (Roan, [Roa96]). Let G be a finite subgroup of Sl3(C). Then C3/G

admits a crepant resolution.

Roan’s proof is by explicit construction, using classification of finite subgroups of

Sl3(Z) . If n ≥ 4, then singularities are less well understood and a crepant resolution

exists only in rather special cases.

Example 3.1.5. For a subgroup {−1,+1} ⊆ Sl4(C), variety C4/{−1,+1} does not

admit any crepant resolution! This follows from the results of Reid, Shephard-Barron

and Tai (see [MS84]).

Let us recall a definition of an age of a matrix, which is important also in the further

context of this paper.

Definition 3.1.6. ForG ∈ Gln(C) of orderm, let e2πia1 , e2πia2 , . . . , e2πian be eigenvalues

of G for some a1, a2, . . . , an ∈ [0, 1) ∩ Q. The value of the sum a1 + a2 + . . . + an is

called the age of G and is denoted by age(G).

Remark 3.1.7. The age of G is an integer if and only if detG = 1 i.e. G ∈ Sln(C).

We and this section with a conjecture, which is crucial in study of a crepant reso-

lutions.

Conjucture 3.1.8 (McKay correspondence). Let G be a finite subgroup of Sln(C)

and (X̃, π) a crepant resolution of X := Cn/G. Then there exists basis of H∗(X,Q)

consisting of algebraic cycles in 1-1 correspondence with conjugacy classes of G, such

that conjugacy classes with age k correspond to basis elements of H2k(X,Q). In par-

ticular b2k is the number of conjugacy classes G with age k, and b2k+1 = 0, so the Euler

characteristic χ(X) = #Conj(G) — the number of conjugacy classes of G.
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3.2 Orbifold’s cohomology

In [CR04] W. Chen and Y. Ruan introduced a cohomology theory for orbifolds. We

consider varieties X/G, where X is a projective variety and G is a finite group acting

on X viewed as orbifold.

Definition 3.2.1. For a variety X/G define the Chen-Ruan cohomology by

H i,j
orb(X/G) :=

⊕
[g]∈Conj(G)

 ⊕
U∈Λ(g)

H i−age(g), j−age(g)(U)

C(g)

,

where Conj(G) is the set of conjugacy classes of G (we choose a representative g of

each conjugacy class), C(g) is the centralizer of g, Λ(g) denotes the set of irreducible

connected components of the set fixed by g ∈ G and age(g) is the age of the matrix of

linearized action of g near a point of U.

The dimension of H i,j
orb(X/G) will be denoted by hi,jorb(X/G).

Remark 3.2.2. If the group G is cyclic of a prime order p, then we can pick a generator

α and the above formula simplifies to

H i,j
orb(X/G) = H i,j(X)G ⊕

⊕
U∈Λ(α)

p−1⊕
k=1

H i−age(αk), j−age(αk)(U).

We have the following theorem:

Theorem 3.2.3 ([Yas04], Theorem 1.1, p. 2). Let G be a finite group acting on an

algebraic smooth variety X. If there exists a crepant resolution X/G
:

of variety X/G,

then the following equality holds

hi,j(X/G
:

) = hi,jorb(X/G).

Example 3.2.4. Let E be a complex elliptic curve and take

E0 := {(x1, x2, . . . , xn+1) ∈ En+1| x1 + x2 + . . .+ xn+1 = 0} ' En.
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Alternating group An+1 acts on En+1 and fixes E0. Consider

Xn := E0/An+1
∼= En/An+1.

In [PR05] K. Paranjape and D. Ramakrishnan proved the following theorem:

Theorem 3.2.5. For n ≤ 3, variety Xn admits a crepant resolution Xn
:

, which is

Calabi-Yau.

We will compute the Hodge numbers of X2
:

and X3
:

using the orbifold cohomology

formula.

If n = 2, then A3 ' C3 = 〈σ〉, where

σ : E2 3 (x, y)→ (−x− y, x) ∈ E2.

We see that

#Λ(σ) = #Λ(σ2) = #E[3] = 9

and locally the action of σ may be linearized to a matrix(
−1 −1
1 0

)
∼
(
ζ3 0
0 ζ2

3

)
,

hence age(σ) = age(σ2) = 1. From the orbifold formula we get

H i,j
orb(E2/A3) = H i,j(E × E)A3 ⊕

⊕
P∈Λ(σ)

2⊕
k=1

H i−age(σk), j−age(σk)(P ),

thus h1,1(X2
:

) = 18 + h1,1(E × E)A3 .

Action of σ on the form

A dz1 ∧ dz1 +B dz1 ∧ dz2 + C dz2 ∧ dz1 +D dz2 ∧ dz2,

where A,B,C,D ∈ C, leads to the following system of equations
A−B + C −D = A

A−D = B

A = C

A−B = D,
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hence C = A and D = A− B, so h1,1(E × E)A3 = 2 and h1,1(X2
:

) = 20, which implies

that X2
:

is a K3 surface.

A three dimensional case is slightly more complicated. Again the orbifold formula

yields

(2-1) H i,j
orb(E3/A4) =

⊕
[g]∈Conj(A4)

 ⊕
U∈Λ(g)

H i−age(g), j−age(g)(U)

C(g)

.

Now we need to analyze the action of a representative of all conjugacy classes of A4 f.i.

id, (1, 2, 3), (1, 3, 2), (1, 2)(3, 4).

Action of id . Consider an action of A4 on the form∑
1≤i,j≤3

A3i+j−3 dzi ∧ dzj,

where A1, A2, . . . , A9 ∈ C. For (1, 2, 3) and (1, 3, 4) we get equations
A2 = A3 = A4 = A6 = A7 = A8 := B

A1 = A5 = A9 := A

A = 2B.

Moreover one can check that the form:

2 dz1 ∧ dz1 + dz1 ∧ dz2 + dz1 ∧ dz3 + dz2 ∧ dz1 + 2 dz2 ∧ dz2 + dz2 ∧ dz3+

+ dz3 ∧ dz1 + dz3 ∧ dz2 + 2 dz3 ∧ dz1

is invariant under the action by A4, hence h1,1(E × E × E)A4 = 1. Similar approach

leads to the equality h2,1(E × E × E)A4 = 1.

Action of g = (1, 2, 3), (1, 3, 2). The action of g = (1, 2, 3), (1, 3, 2) on E3 is given by

g̃ : E × E × E 3 (x, y, z)→ (y, z, x) ∈ E × E × E

and

g̃ : E × E × E 3 (x, y, z)→ (z, x, y) ∈ E × E × E,

respectively. Hence actions are represented by matrices0 1 0
0 0 1
1 0 0

 ∼
0 0 1

1 0 0
0 1 0

 ∼
1 0 0

0 ζ3 0
0 0 ζ2

3

.
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In both cases age(g) = 1, Λ(g) = {(x, x, x)}x∈E ' E and Λ(g) is invariant under the

action of centralizer of g, which is equal to 〈(1, 2, 3)〉.

Action of g = (1, 2)(3, 4). The action of g is given by

g̃ : E × E × E 3 (x, y, z)→ (y, x,−x− y − z) ∈ E × E × E,

with a representative matrix 0 1 0
1 0 0
−1 −1 −1

 ∼
−1 0 0

0 −1 0
0 0 1

,
thus

Λ(g) =
⋃

τ∈E[2]

{(x, x, τ − x)}x∈E and age(g) = 1.

The action of (1, 3)(2, 4) and (1, 4)(2, 3) on curves {(x, x, τ − x)}x∈E ' E leads to

curves {(τ − x, τ − x, x)}x∈E. Note that

C(g) = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

Since φ((x, x, τ − x)) = (τ − x, τ − x, x), where

φ : E3 3 (x, y, z)→ (τ − x, τ − y, τ − z) ∈ E3

is an involution, we see that U/C(g) ' E/(Z/2Z) ' P1 for any U ∈ Λ(g).

Finally, from (2-1) we deduce h1,1(X3
:

) = 7 and h2,1(X3
:

) = 3.

Remark 3.2.6. The quotients of a product of three elliptic curves by a finite group were

studied by M. Donten-Bury in her MSc thesis (see [Don11]). She classified a finite index

subgroups of Sl3(Z) and found Hodge diamonds of resulting quotients, using different

methods.

3.3 Orbifold Euler characteristic

Let G be a finite group acting on a compact differentiable manifold. Then the Eu-

ler characteristic of the quotient X/G may be computed using Lefschetz fixed point
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formula

e(X/G) =
1

#G

∑
g∈G

e(Xg),

where Xg denotes the set of points x ∈ X such that gx = x.

If we consider the quotient X/G as an orbifold, then motivated by string theory

L. Dixon, J. Harvey, C. Vafa and E. Witten in [DHVW85, DHVW86] introduced orb-

ifold (stringy) Euler characteristic, by the following formula:

eorb(X/G) :=
1

#G

∑
(g,h)∈G×G
gh=hg

e(Xg ∩Xh).

In the case of algebraic variety X the following theorem holds

Theorem 3.3.1 ([Roa89], Theorem 2, p. 534). Let G be a finite abelian group acting

on smooth algebraic variety X. If there exists a crepant resolution X/G
:

of variety

X/G, then the following equality holds

e(X/G
:

) = eorb(X/G).

If the group G is abelian, then under some assumptions this theorem has been

proved by S. S. Roan [Roa89]. Some particular examples of a group G were studied by

T. Höfer and F. Hirzebruch in [HH90].



CHAPTER 4

CALABI-YAU MANIFOLDS OF BORCEA-VOISIN TYPE

One of the first important achievements in the theory of Calabi-Yau threefolds and in

particular Mirror Symmetry, was the construction given independently by C. Borcea

([Bor97]) and C. Voisin ([Voi93]). Borcea and Voisin constructed families of Calabi-

Yau threefolds using a non-symplectic involutions of K3 surfaces and elliptic curves.

Moreover C. Voisin gave a construction of explicit mirror maps while C. Borcea found a

conditions when these threefolds have complex multiplication. Attempts to generalize

the Borcea-Voisin construction motivated studies of the non-symplectic automorphisms

on K3 surfaces.

The Borcea-Voisin construction is actually similar to the one given by C. Vafa and E.

Witten in [VW95]. They divided a product of three tori by a group of automorphisms

preserving the volume form. This approach gave rise to abstract physical models stud-

ied by L. Dixon, J. Harvey, C. Vafa, E. Witten in [DHVW85, DHVW86]. Similar con-

structions i.e. quotients of products of tori by a finite group were classified by J. Dillies,

R. Donagi, A. E. Faraggi an K. Wendland in [Dil07, DF04, DW09].

There are many generalizations of the above constructions. The first idea is to allow

automorphisms of higher order. In [Roh10] Rohde constructed Calabi-Yau threefolds by

taking a quotient of a product of an elliptic curve and aK3 surface by an automorphism

33
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of order 3, fixing only points or rational curves on the K3 surface. A. Molnar in

his PhD thesis ([Mol15]) found another groups acting on a product of three elliptic

curves and studied modularity of the resulting quotients. S. Cynk and K. Hulek study

examples of threefolds (and higher dimensional varieties) using involutions and higher

order automorphisms (see [CH07]); they also proved their modularity. Finally [CG16]

A. Cattaneo and A. Garbagnati used purely non-symplectic automorphisms of order

3, 4 and 6 to generalized the Borcea-Voisin construction.

Another possibility is to take a quotient of a product of two K3 surfaces by a finite

group. Such fourfolds were studied by J. Dillies in [Dil12a]. F. Reidegald divided S×P1,

where S is a K3 surface, by a cyclic group of order 3. He also found a desingularization

of such quotients (see [Rei15]).

In the present chapter we briefly recall the original Borcea-Voisin construction.

Then, we shall reproof formulas for the Hodge numbers of Calabi-Yau threefolds con-

structed by A. Cattaneo and A. Garbagnati, using the orbifold cohomology formula

and the stringy Euler characteristic.

4.1 The classical Borcea-Voisin construction

Theorem 4.1.1 (Borcea-Voisin, [Bor97, Voi93]). Let E be an elliptic curve and αE

an involution which does not preserve a period of E. Let S be a K3 surface with a non-

symplectic involution αS. Then a crepant resolution X̃ of the quotient

X := (E × S)/(αE × αS) is a Calabi-Yau manifold with the Hodge numbers:

h1,1(X̃) = h2,2(X̃) = 11 + 5N ′ −N and h2,1(X̃) = h1,2(X̃) = 11 + 5N −N ′,

where N is the number of curves in Fix(αS) and N ′ denotes the sum of genera of all

curves in fixed locus.

From Nikulin’s classification it follows that for anyK3 surface S with non-symplectic

involution αS which fixes N curves with sum of genera equal to N ′, there exists a com-
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plementary surface S ′ and its non-symplectic involution α′S with N ′ fixed curves with

sum of genera equal to N. Thus we have the following corollary:

Corollary 4.1.2. The pair
(

(E × S)/(αE × αS)
:

, (E × S ′)/(αE × αS′)
: )

is a mirror

pair.

4.2 The Cattaneo and Garbagnati construction

In [CG16] A. Cattaneo and A. Garbagnati generalized the Borcea-Voisin construction

allowing a non-symplectic automorphisms of aK3 surfaces of higher orders — 3, 4 and 6.

Theorem 4.2.1 (Cattaneo-Garbagnati, 2013). Let S be a K3 surface admitting a

purely non-symplectic automorphism αS of order n. Let E be an elliptic curve admitting

an automorphism αE such that αE(ωE) = ζnωE, where ζn denotes n-th root of unity.

Then n = 2, 3, 4, 6 and (S × E)/(αS × αn−1
E ), is a singular variety which admits a

desingularization which is a Calabi-Yau manifold.

Proof. The assumption for n = 2, 3, 4, 6 is necessarily by [Sil09].

Varieties S and E are Calabi-Yau, thus variety S × E has trivial canonical bundle

and a generator of H3,0(S × E,C) is ωS ∧ ωE. We have

αS × αn−1
E (ωS ∧ ωE) = ζn · ζn−1

n ωS ∧ ωE = ωS ∧ ωE,

hence by 3.1.4 there exists a crepant resolution of (S × E)/(αS × αn−1
E ).

Since the Hodge numbers of Calabi-Yau manifolds are birational invariants (2.1.6),

we obtain that a desingularization of (S × E)/(αS × αn−1
E ) has the Hodge diamond of

a Calabi-Yau type.

Definition 4.2.2. Any crepant resolution of (S × E)/(αS × αn−1
E ), will be called a

Calabi-Yau 3-fold of Borcea-Voisin type.



36 4.2. The Cattaneo and Garbagnati construction

The authors gave a detailed crepant resolution and computed the Hodge numbers

of the resulting algebraic varieties. Their approach is based on a general idea: Let

Xn := (S × E)/(αS × αn−1
E )

:
,

be a Calabi-Yau threefold of Borcea-Voisin type. The numbers h1,1(Xn) and h2,1(Xn)

depend on the action of αS × αn−1
E on S × E. They are the sum of two contributions:

one comes from the desingularization of the singular locus of (S × E)/(αS×αn−1
E ), the

other comes from the cohomology of S × E which is invariant for αS × αn−1
E . Since

the fixed loci of αiE (i ∈ {1, 2, . . . , n}) are uniquely determined by n, the fixed loci of

αS × αn−1
E depends only on the properties of the fixed loci of αiS.

The construction of a crepant resolution of (S × E)/(αS × αn−1
E ) is based on com-

mutativity of the following diagram

S × E

·

� _

π

��

S̃ × Eσoo
� _

π′��

(S × E)/(αS × αn−1
E ) (S × E)/(αS × αn−1

E )
:

oo

where σ is a blow up in the fixed locus Fix(αS × αn−1
E ) and π, π′ are quotient maps.

After blowing up the fixed locus and then considering the quotient by the induced

automorphism we obtain a desingularization of (S × E)/(αS × αn−1
E ).

The part of the cohomology which comes from the cohomology of S × E may be

computed from the Künneth formula 1.0.5 while the affect of singular locus is given by

the formula 1.0.7.
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4.2.1 Computations of Hodge numbers of Xn

We shall reproof formulas for the Hodge numbers of Calabi-Yau threefolds of Borcea-

Voisin type, using the orbifold cohomology formula and the orbifold Euler characteristic

introduced in the third chapter.

Order 2

Let (S, αS) be a K3 surface admitting a non-symplectic involution αS. Consider an

elliptic curve E with non-symplectic involution αE (any elliptic curve E admits such

an automorphism). Let us denote by H2(S,C)αS the invariant part of cohomology

H2(S,C) under αS and by r the dimension r = dimH2(S,C)αS . We also denote the

eigenspace for −1 of the induced action α∗S on H2(S,C) by H2(S,C)−1 and by m the

dimension m = dimH2(S,C)−1.

We have decomposition:

H2(S,C) = H2(S,C)αS ⊕H2(S,C)−1,

hence the Hodge diamonds of the respective eigenspaces have the following shape:

H i,j(S,C)αS

1

0

0

0

r

0

0

0

1

H i,j(S,C)−1

0

0

1

0

m− 2

0

1

0

0

The Hodge diamonds of eigenspaces of the induced action of α∗E on H1(E,C) have

forms

H i,j(E,C)αE

1

0 0

1

H i,j(E,C)−1

0

1 1

0

By Künneth’s formula the Hodge diamond of H3(S × E,C)C2 is given by
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1

0

0

1

0

r + 1

m− 1

0

0

m− 1

r + 1

0

1

0

0

1

The local action of −1 on a fixed curve may be linearized to matrix1 0 0
0 −1 0
0 0 1


with age equal to 1. Thus by 3.3.1

hi,j(S × E/C2

:
) = hi,jorb(S × E/C2) = hi,j(S × E)C2 ⊕

⊕
U∈Λ(−1)

hi−1,j−1(U),

which gives formulas

(2-1) h1,1(S × E/C2

:
) = r + 1 + 4N and h2,1(S × E/C2

:
) = m− 1 + 4N ′.

Since the quotient S/αS is a smooth surface we can use stringy number to compute

its Euler characteristic:

e(S/αS) =
1

2
(e(S) + 2N − 2N ′) = 12 +N −N ′.

On the other hand from the Hodge diamond of S/αS follows that e(S/αS) = r + 2,

thus r = 10 + N − N ′. Moreover r + m − 2 = 20, hence m = 12 − N + N ′. Putting

formulas for r and m into 2-1 we recover formulas from Theorem 1.1 of [CG16].

Order 3

Let (S, αS) be a K3 surface admitting a purely non-symplectic automorphism αS of

order 3. Eigenvalues of induced mapping α∗S on H2(S,C) belong to {1, ζ3, ζ
2
3}. Let us

denote by H2(S,C)ζi3 the eigenspace of the eigenvalue ζ i3. For i = 1, 2 the dimension

of H2(S,C)ζi3 does not depend on i and will be denoted by m. Moreover let r be the

dimension of H2(S,C)αS — invariant part of H2(S,C) under αS.
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Consider an elliptic curve E with the Weierstrass equation y2 = x3 + 1 together

with a non-symplectic automorphism αE of order 3 such that αE(x, y) = (ζ3x, y). We

denote an automorphism αS × α2
E by α.

We see that

H2(S,C) = H2(S,C)αS ⊕H2(S,C)ζ3 ⊕H2(S,C)ζ23 .

Because α∗S
∣∣
H2,0(S,C)

([ωS]) = ζ3[ωS], we get H2,0(S) ⊂ H(S,C)ζ3 .

The complex conjugation yields H0,2(S) ⊂ H2(S,C)ζ23 . Finally

α∗([ωS ∧ ωE]) = ζ3ζ3[ωS ∧ ωE] = [ωS ∧ ωE],

hence the Hodge diamonds of the respective eigenspaces have the following forms

H i,j(S,C)αS

1

0

0

0

r

0

0

0

1

H i,j(S,C)ζ3

0

0

1

0

m− 1

0

0

0

0

H i,j(S,C)ζ23

0

0

0

0

m− 1

0

1

0

0

Similar analysis gives the Hodge diamonds of eigenspaces of action on the Hodge

groups.

H i,j(E,C)α
2
E

1
0 0

1

H i,j(E)ζ3

0
1 0

0

H i,j(E)ζ23

0
0 1

0

By Künneth’s formula the Hodge diamond of the invariant part of H3(S × E,C)

has the same form as in the case of order 2.

We denote the automorphism αS × α2
E by α. Let us now consider possible actions

of elements of 〈α〉 ' C3 on S and E.

The action of α. The action of the automorphism α on E is given by

E 3 (x, y) 7→ (ζ2
3x, y) ∈ E,
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hence it has three fixed points. Locally the action of α on components of the fixed

locus can be diagonalized to1 0 0
0 ζ3 0
0 0 ζ2

3

 and

ζ2
3 0 0
0 ζ2

3 0
0 0 ζ2

3

 .

It follows that ages are equal to 1 and 2 respectively.

The action of α2. Analogously we gets possible diagonalised matrices1 0 0
0 ζ2

3 0
0 0 ζ3

 and

ζ3 0 0
0 ζ3 0
0 0 ζ3

 ,

with ages 1 and 1.

Thus decomposing (S × E)α = C ∪ R ∪ P , where

C := {3 curves with highest genus g(C)},

R := {3k − 3 rational curves},

P := {3n isolated points},

the orbifold formula implies that

H i,j
orb(S × E/C3) = H i,j(S × E)C3 ⊕

⊕
U∈Λ(ζ3)

2⊕
ι=1

H i−age(αι), j−age(αι)(U) =

= H i,j(S × E)C3 ⊕

(⊕
U∈C

H i−1, j−1(U)⊕H i−1, j−1(U)

)
⊕

⊕

(⊕
U∈R

H i−1, j−1(U)⊕H i−1, j−1(U)

)
⊕

(⊕
U∈P

H i−1, j−1(U)

)
.

Therefore by 3.2.3

h1,1(X/C3

:
) = r + 1 + 6 · 1 + 2 · (3k − 3) · 1 + 3n · 1 = r + 1 + 3n+ 6k.

h1,2(X/C3

:
) = m− 1 + 2 · 3 · g(C) + (3k − 3) · 2 · 0 + 3n · 0 = m− 1 + 6g(C).

Hence we proved the following theorem:
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Theorem 4.2.3. If SαS consists of k curves together with a curve with highest genus

g(C) and n isolated points, then for any crepant resolution of the variety (S×E)/(αS×

α2
E) the following holds

h1,1 = r + 1 + 3n+ 6k and h2,1 = m− 1 + 6g(C).

Order 4

Let (S, αS) be a K3 surface with purely non-symplectic automorphism αS of order 4.

Consider an elliptic curve E with the Weierstrass equation y2 = x3 + x together with

a non-symplectic automorphism αE of order 4 such that

αE(x, y) = (−x, iy).

Additionally, suppose that Sα2
S is not a union of two elliptic curves.

We shall keep the notation of [CG16].

X = S × E,

P – the infinity point of E,

r = dimH2(S,C)αS ,

m = dimH2(S,C)ζi6 for i ∈ {1, 2, . . . , 5},

N – number of curves which are fixed by α2
S,

k – number of curves which are fixed by αS (curves of the first type).

b – number of curves which are fixed by α2
S and are invariant by αS (curves

of the second type),

a – number of pairs (A,A′) of curves which are fixed by α2
S and αS(A) = A′

(curves of the third type),
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D – the curve of the highest genus in Sα2
S ,

n1 – number of points which are fixed by αS not laying on the curve D,

n2 – number of points which are fixed by αS laying on the curve D.

For the same reasons as in the previous cases

h1,1
orb(X)C4 = r + 1 and h2,1

orb(X)C4 = m− 1.

We denote an automorphism αS × α3
E by α. Contrary to the case of an action of

a cyclic group of prime order here we have to consider the (non-trivial) action of a

stabilizer of an element g (generating a proper subgroup) on the cohomology groups of

Λ(g). To this end for any g ∈ C4 let

Mg :=
⊕
U∈Λ(g)

H1−age(g), 1−age(g)(U).

If g 6= 1, then H1−age(g),1−age(g)(U) = C when age(g) = 1 and H1−age(g),1−age(g)(U) = 0

otherwise, so we can identify Mg with the vector space spanned by irreducible compo-

nents U ∈ Λ(g) with age(g) = 1. We will consider all possible cases.

The action of α and α3. The action of automorphism α on E is given by

E 3 (x, y) 7→ (−x,−iy) ∈ E,

hence it has two fixed points — P and (0, 0). The fixed locus of α on S consists of k

curves and n1 + n2 isolated points. Since locally the action of α on X along a fixed

curve can be diagonalised to 1 0 0
0 i 0
0 0 −i

 ,

we infer that its age equals 1. Near a fixed point we have a matrix

−1 0 0
0 −i 0
0 0 −i

 ,
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hence the age equals 2.

In case of the action of α3 on S we observe that the fixed locus consists of k curves

and n1 + n2 points with ages 1. We see that the contribution of h1,1
orb from both actions

is equal to 2k + 2k + 2(n1 + n2) = 4k + 2(n1 + n2).

Element of C4 α α3

Irreducible components 2k curves, 2n1 + 2n2 points 2k curves, 2n1 + 2n2

The age curve: 1, point: 2 curve: 1, point: 1

Contribution to h1,1
orb 2k 2k + 2(n1 + n2)

The action of α2. The automorphism α2 acts on E as

E 3 (x, y) 7→ (x,−y) ∈ E,

hence it has four fixed points — P , (0, 0), (i, 0), (−i, 0) from which only two are

invariant under the action of α and the other two are permuted. After identifying Mζ24

with the vector space spanned by irreducible components of the fixed locus of α2 we

will find the action of induced map α∗ on it.

Because the matrix of the action of α2
E
∗ on the vector space spanned by the fixed

points of αE is 
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ∼


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ,

it follows that it has 3-dimensional eigenspace for +1 and 1-dimensional eigenspace for

−1.

The fixed locus of α2
S consists of N curves with a pairs permuted by αS. Hence α∗S on

the vector space spanned by the curves fixed by α2
S has (N−a)-dimensional eigenspace

for +1 and a-dimensional eigenspace for −1. One can see that N = k + b+ 2a, so the

total contribution to h1,1
orb equals 3(N − a) + a = 3k + 3b+ 4a.
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Element of C4 α2

Irreducible components 4N curves

The age curves: 1

Contribution to h1,1
orb 3k + 3b+ 4a

From the orbifold formula follows that

h1,1
orb = r + 1 + 4k + 2(n1 + n2) + 3k + 3b+ 4a = 1 + r + 7k + 3b+ 2(n1 + n2) + 4a.

In order to compute h1,2
orb we will use the orbifold Euler characteristic. In the table

below we collect all possible intersections Xg ∩Xh, where (g, h) ∈ C2
4 .

1 ζ4 ζ2
4 ζ3

4

1 X Xζ4 Xζ24 Xζ4

ζ4 Xζ4 Xζ4 Xζ4 Xζ4

ζ2
4 Xζ24 Xζ4 Xζ24 Xζ4

ζ3
4 Xζ4 Xζ4 Xζ4 Xζ4

By 3.3.1 we obtain the formula

e(X/C4

:
) = eorb(X/C4) =

1

4

(
12e(Xζ4) + 3e(Xζ24 )

)
= 6e(Sζ4) + 3e(Sζ

2
4 ).

If D is of the first type, then by the Riemann-Hurwitz formula we infer that

e(Sζ4) = 2− 2g(D) + 2(k − 1) + n1 and e(Sζ
2
4 ) = 2− 2g(D) + 2(N − 1).

Since X/C4

:
is Calabi-Yau we get

h1,2(X/C4

:
) = h1,1(X/C4

:
)− 1

2
e(X/C4

:
) = 1 + r + 7k + 3b+ 2(n1 + n2) + 4a−

− (−9g(D) + 6k + 3N + 3n1) = 1 + r + k + 3b+ 2n2 − n1 + 4a+ 9g(D)− 3N.

By ([AS15], Thm. 1.1) and ([AS15], Prop. 1) we have the following relations

r =
1

2
(12 + k + 2a+ b− g(D) + 4h) and m =

1

2
(12− k − 2a− b+ g(D)),
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where h =
∑

C⊆SαS
(1−g(C)). Moreover since D is of the first type h = k−g(D), n2 = 0,

n1 = 2h+ 4 and b =
n1

2
, thus

h1,2(X/C4

:
) = 1 + r + k + 3b+ 2n2 − n1 + 4a+ 9g(D)− 3N = m− 1 + 7g(D).

If D is of the second type, then analogously the Riemann-Hurwitz formula yields

e(Sζ4) = 2h+ n1 + n2 and e(Sζ
2
4 ) = 2− 2g(D) + 2(N − 1).

Thus

h1,2(X/C4

:
) = h1,1(X/C4

:
)− (6h+ 3n1 + 3n2 + 3N − 3g(D)) =

= 1 + r + 7k + 3b− n1 − n2 + 4a− 6h− 3N + 3g(D).

Using the additional relations h = k, n1 + n2 = 2h+ 4 and b =
n1

2
+ 1, we get

h1,2(X/C4

:
) = m+ 2g(D)− n2

2
.

Hence we proved the following theorem:

Theorem 4.2.4 ([CG16], Proposition 6.3). If Sα2
S is not a union of two elliptic curves,

then for any crepant resolution of variety X/C4 the following formulas hold

• If D is of the first type, then

h1,1 = 1 + r + 7k + 3b+ 2(n1 + n2) + 4a,

h1,2 = m− 1 + 7g(D).

• If D is of the second type, then

h1,1 = 1 + r + 7k + 3b+ 2(n1 + n2) + 4a,

h1,2 = m+ 2g(D)− n2

2
.



46 4.2. The Cattaneo and Garbagnati construction

Order 6

Let (S, γS) be a K3 surface with purely non-symplectic automorphism γS of order 6.

Consider an elliptic curve E with the Weierstrass equation y2 = x3 + 1 together with

a non-symplectic automorphism γE of order 6 such that

γE(x, y) = (ζ2
6x,−y).

We shall keep the notation of [CG16].

X = S × E,

P – the infinity point of E,

r = dimH2(S,C)γS ,

m = dimH2(S,C)ζi6 for i ∈ {1, 2, . . . , 5},

l – number of curves fixed by γS,

k – number of curves fixed by γ2
S,

N – number of curves fixed by γ3
S,

p(2,5) + p(3,4) – number of isolated points fixed by γS of type (2, 5) and (3, 4)

i.e. the action of γS near the point linearises to respectively(
ζ2

6 0
0 ζ5

6

)
and

(
ζ3

6 0
0 ζ4

6

)
,

n – number of isolated points fixed by γ2
S,

2n′ – number of isolated points fixed by γ2
S and switched by γS,

a – number of triples (A,A′, A′′) of curves fixed by γ3
S such that γS(A) = A′

and γS(A′) = A′′,
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b – number of pairs (B,B′) of curves fixed by γ2
S such that γS(B) = B′,

D – the curve with the highest genus in the fixed locus of γS,

G – the curve with the highest genus in the fixed locus of γ2
S,

F1, F2 – the curves with the highest genus in the fixed locus of γ3
S,

Remark 4.2.5. From ([Dil12b], Thm. 4.1) follows that g(D) ∈ {0, 1}. Moreover by

[AST11] we see that if g(F1) 6= 0, g(F2) 6= 0, then g(F1) = g(F2) = 1. Clearly if

g(D) = 1, then D = G ∈ {F1, F2}.

Denote by γ an automorphism γS × γ5
E. Clearly 〈γ〉 ' C6. Similar computations as

in the previous cases imply that

h1,1
orb(X)C6 = r + 1 and h2,1

orb(X)C6 = m− 1.

For any g ∈ C6 let

Mg :=
⊕
U∈Λ(g)

H1−age(g), 1−age(g)(U).

The action of γ and γ5. The action of an automorphism γ on E is given by

E 3 (x, y) 7→ (ζ4
6x,−y) ∈ E

while γ5 acts on E by

E 3 (x, y) 7→ (ζ2
6x,−y) ∈ E,

thus both have only one fixed point — P .

The fixed locus of γ on S consists of l curves and p(2,5) + p(3,4) isolated points.

Locally the action of γ on S × E along a fixed curve can be diagonalised to a matrix1 0 0
0 ζ6 0
0 0 ζ5

6

 ,
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with age equal to 1. In the fixed point of type (2, 5) and (3, 4) we get respectively a

matrices ζ2
6 0 0
0 ζ5

6 0
0 0 ζ5

6

 and

ζ3
6 0 0
0 ζ4

6 0
0 0 ζ5

6

 ,

hence their ages equal 2.

In the case of the action of γ5 on S we observe that the fixed locus consists of l

curves and p(2,5) + p(3,4) isolated points. Along the curve we have a matrix1 0 0
0 ζ5

6 0
0 0 ζ6

 ,

while in fixed points we have a matricesζ6 0 0
0 ζ4

6 0
0 0 ζ6

 or

ζ2
6 0 0
0 ζ3

6 0
0 0 ζ6

 ,

hence their ages are equal to 1. The above analysis shows that the contribution to h1,1
orb

from both actions equals l + l + p(2,5) + p(3,4) = 2l + p(2,5) + p(3,4).

Element of C6 γ γ5

Irr. comp. l curves, p(2,5) + p(3,4) pts. l curves, p(2,5) + p(3,4) pts.

The age curve: 1, point: 2 curve: 1, point: 1

Contribution to h1,1
orb l l + p(2,5) + p(3,4)

The action of γ2 and γ4. Actions of automorphisms γ2 and γ4 on E are given by

E 3 (x, y) 7→ (ζ2
6x, y) ∈ E

and

E 3 (x, y) 7→ (ζ4
6x, y) ∈ E,

respectively. Thus they have three fixed points — {P, (0, 1), (0,−1)} from which only

P is invariant under γ and the remaining two are switched.
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The matrix of the action γ5
E
∗ on the vector space generated by fixed points of γ4

E is1 0 0
0 0 1
0 1 0

 ∼
1 0 0

0 1 0
0 0 −1


hence it produces a 2-dimensional eigenspace for +1 and 1-dimensional eigenspace for

−1. We have similar decomposition in the case of the action γ5
E
∗ on the vector space

generated by fixed points of γ2
E.

Notice that both γ2 and γ4 have the same fixed points but different ages, the age at

a point of a fixed curve is always 1 while for an isolated fixed point we have age(γ2) = 2

and age(γ4) = 1. So we can identify Mζ26
and Mζ46

with the vector space spanned by

irreducible curves and irreducible components in Λ(γ2), respectively.

The fixed locus of γ2
S and γ4

S consists of:

- p(2,5) points fixed by γS,

- n′ pairs of points switched by γS,

- k − 2b curves fixed by γS,

- b pairs of curves swapped by γS.

Thus the action of γS on the vector space spanned by irreducible fixed curves has

(k − b)-dimensional eigenspace for +1 and b-dimensional eigenspace for -1 while the

action of γS on the vector space spanned by all irreducible components of the fixed

locus has (k − b + p(2,5) + n′)-dimensional eigenspace for +1 and (b + n′)-dimensional

eigenspace for -1.

Consequently the contribution of the action of γ2 to h1,1
orb is

2(k − b) + b = 2k − b

while the contribution of of γ4 is

2(k − b+ p(2,5) + n′) + b+ n′ = 2k − b+ 2p(2,5) + 3n′.
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Finally both actions add to h1,1
orb

2k − b+ 2k − b+ 2p(2,5) + 3n′ = 4k − 2b+ 2p(2,5) + 3n′.

Element of C6 γ2 γ4

Irreducible components 3k curves, 3n points 3k curves, 3n points

The age curve: 1, point: 2 curve: 1, point: 1

Contribution to h1,1
orb 4k − 2b+ 2p(2,5) + 3n′

The action of γ3. An automorphism γ3 acts on E as

E 3 (x, y) 7→ (x,−y) ∈ E,

hence it has four fixed points — {P, (1, 0), (ζ3, 0), (ζ2
3 , 0)} from which only P is invariant

under γ and the remaining three form a 3-cycle. The action of γE on the fixed locus

of γ3
E preserves one point and permutes the remaining three points so it produces

2-dimensional eigenspace for +1 and 1-dimensional eigenspaces for ζ3 and ζ2
3 .

The action of γS on fixed locus of γ3
S preserves N−3a curves and permutes a triples.

Thus the action of γ∗S has N − 2a-dimensional eigenspace for +1 and a-dimensional

eigenspaces for ζ3 and ζ2
3 .

The contribution to h1,1
orb equals 2(N − 2a) + a+ a = 2N − 2a.

Element of C6 γ3

Irreducible components 4N curves

The age curve: 1

Contribution to h1,1
orb 2N − 2a

Consequently, by the orbifold formula we see that

h1,1
orb = r + 1 + l + l + p(2,5) + p(3,4) + 4k − 2b+ 2p(2,5) + 3n′ + 2N − 2a =

= r + 1 + 2l + 2N − 2b+ 4k − 2a+ 3n′ + 3p(2,5) + p(3,4).

By the orbifold cohomology formula we see that the contribution to h1,2 have only

curves in Λ(g) for any g ∈ C6.
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If g(D) ≥ 1, by 4.2.5 we can assume that D = G = F1. We see that contributions

of γ and γ5 equal to 2g(D). The automorphisms γ2 and γ4 have three fixed points on

E with one 2-point orbit, hence by Künneth’s formula the contribution to h1,2 in this

case equals 4g(D). Since γ3 has four fixed points with 3-points orbit, we find that it’s

contribution is equal to 2g(D) + g(F2) + g(F2/γS). Thus

h1,2(X/C6

:
) = m− 1 + 8g(D) + g(F2) + g(F2/γS).

Now consider the case g(D) = 0. By the same argument as above, we see that

contribution of γ2 and γ4 equals 2g(G) + 2g(G/γS), while the contribution of γ3 equals

g(F1) + g(F1/γS) + g(F2) + g(F2/γS), hence

h1,2(X/C6

:
) = m− 1 + 2g(G) + 2g(G/γS) + g(F1) + g(F1/γS) + g(F2) + g(F2/γS).

We proved the following theorem:

Theorem 4.2.6 ([CG16], Proposition 7.3). For any crepant resolution of variety X/C6

the following formulas hold

h1,1 = r + 1 + 2l + 2N − 2b+ 4k − 2a+ 3n′ + 3p(2,5) + p(3,4),

h1,2 =


m− 1 + 8g(D) + g(F2) + g(F2/γS) if g(D) ≥ 1,

m− 1 + 2g(G) + 2g(G/γS) + g(F1) + g(F1/γS)

+g(F2) + g(F2/γS) if g(D) = 0.

Finally, we will compute again h1,2, this time using orbifold Euler characteristic.

Since it involves different invariants than in the previous approach, we will get a new

relation among them (Corollary 4.2.7).

In the table below we collect all possible intersections Xg ∩Xh, where (g, h) ∈ C2
6 .
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1 ζ6 ζ2
6 ζ3

6 ζ4
6 ζ5

6

1 X Xζ6 Xζ26 Xζ36 Xζ26 Xζ6

ζ6 Xζ6 Xζ6 Xζ6 Xζ6 Xζ6 Xζ6

ζ2
6 Xζ26 Xζ6 Xζ26 Xζ6 Xζ26 Xζ6

ζ3
6 Xζ36 Xζ6 Xζ6 Xζ36 Xζ6 Xζ6

ζ4
6 Xζ26 Xζ6 Xζ26 Xζ6 Xζ6 Xζ6

ζ5
6 Xζ6 Xζ6 Xζ6 Xζ6 Xζ6 Xζ6

From 3.3.1 we see that

e(X/C6

:
) =

1

6

(
24e(Xζ6) + 8e(Xζ26 ) + 3e(Xζ36 )

)
= 4e(Sζ6) + 4e(Sζ

2
6 ) + 2e(Sζ

3
6 ).

Thus

h1,2(X/C6

:
) = h1,1(X/C6

:
)− 2e(Sζ6)− 2e(Sζ

2
6 )− e(Sζ36 ).

By the Riemann-Hurwitz formula we obtain

e(Sζ6) = 2(l − 1) + 2− 2g(D) + p(2,5) + p(3,4),

e(Sζ
2
6 ) = 2(k − 1) + 1− g(G) + 1− g(G/γS) + n,

e(Sζ
3
6 ) = 2(N − 2) + 1− g(F1) + 1− g(F1/γs) + 1− g(F2) + 1− g(F2/γs)

hence after simplifying

h1,2(X/C6

:
) = r + 1− 2l − 2b− 2a+ 3n′ + p(2,5) − p(3,4) − 2n+ 4g(D) + 2g(G)+

+ 2g(G/γs) + g(F1) + g(F1/γs) + g(F2) + g(F2/γs).

Comparing both formulas we get:

Corollary 4.2.7. With the notation above, the following relation holds

−m+ r + 2− 2l − 2b− 2a+ 3n′ + p(2,5) − p(3,4) − 2n+ 4g(D) = 0.



CHAPTER 5

MODULARITY OF DOUBLE OCTICS

In this chapter we discuss the modularity of Calabi-Yau varieties, especially double

octic threefolds. We first explain what, we mean by modularity, introducing famous

Weil Conjectures and L-series of projective varieties. We shall describe a resolution of

singularities of double covers branched along eight planes. Finally, we shall investigate

realization of weight 4 cusp forms in rigid double octics.

5.1 Modularity of Calabi-Yau manifolds

5.1.1 Weil conjectures

In this section we shall discuss Weil conjectures, which provide magnificent properties

of projective varieties defined over Q and their prime reductions.

Definition 5.1.1. A projective variety X ⊂ Pn is defined over Q if its homogeneous

ideal is generated by polynomials with rational coefficients.

If projective variety is defined over Q it also has a model defined over Z. Such

varieties admit reduction modulo fields i.e. we consider generators of homogeneous

ideal of X in the projective space over another field. The reduction of X over the

algebraic closure of field k will be denoted by Xk. In the case of k = Fq, where q = pk

53



54 5.1. Modularity of Calabi-Yau manifolds

is a prime power, we write simply Xq. A prime p is called a prime of a good reduction

if Xq is a smooth projective variety, otherwise it is called a prime of a bad reduction.

Definition 5.1.2. Let q = pk be a prime power and X/Fq a variety. Then the zeta

function of X/Fq is defined by

Zq(t) := exp

(
∞∑
r=1

Nqr
tr

r

)
∈ Q[[t]],

where Nqr is the number of Fqr - rational points in the reduction Xq.

In general it is a very deep problem to compute the zeta function of a given variety.

A. Weil in [Wei49] observed series of remarkable conjectures concerning zeta functions;

they are called the Weil Conjectures although since 1974 they are theorems.

Theorem 5.1.3 (Weil Conjectures). Let X be a smooth d-dimensional projective va-

riety defined over the field Fq, where q = pk is a prime power. Then the function Zq(t)

satisfies the following properties:

1. (Rationality) The zeta function is rational i.e.

Zq(t) =
Pq(t)

Qq(t)
for some polynomials Pq, Qq ∈ Q[t].

2. (Functional equation) The function Zq(t) satisfies a functional equation:

Zq

(
1

qdt

)
= ±qde/2teZq(t),

where e is the self-intersection of the diagonal in X ×X.

3. Analogue of The Riemann hypothesis holds i.e.

Zq(t) =
P1,q(t) · P3,q(t) · . . . · P2d−1,q(t)

P0,q(t) · P2,q(t) · . . . · P2d,q(t)
,

where P0,q(t) = 1− t, P2d,q(t) = 1− qdt and

Pi,q(t) =

bi∏
j=1

(1− αi,jt)
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for 1 ≤ i ≤ 2d− 1, where the αi,j are algebraic integers of complex absolute value

|αi,j| = q1/2.

4. Assume that X arises as the reduction of a variety defined over a number field.

Then the following holds:

e =
2d∑
i=0

(−1)ibi = χ(XC),

where bi denote the Betti numbers of XC.

A. Weil proved the conjectures in the case of curves. The rationality was proved

by Dwork in [Dwo60], the functional equation by Grothendieck ([Gro95]), and the

analogue of the Riemann hypothesis (in fact the most difficult part) was proved by

Deligne in [Del74, Del80].

5.1.2 Étale cohomology and L series

To work with arithmetic of projective varieties, we need a new cohomology theory.

A. Grothendieck developed the étale cohomology, which is a key ingredient postulated

by A. Weil in the proof of Weil conjectures (P. Deligne used it to prove Riemann

hypothesis).

Let X be a d-dimensional, smooth, projective variety defined over an algebraically

closed field. For any prime l 6= char(X) we define a finite dimensional Ql-vector

spaces denoted by H i
ét(X,Ql) (for i ∈ N), which have a similar properties to singular

cohomology in characteristic zero. More precisely, we want the following conditions:

(i) Functoriality with respect to morphisms of smooth projective varieties: for smooth

projective varieties X and Y the following diagram commutes:

H i
ét(X,Ql)

·id
��

H i
ét(Y,Ql)

f∗oo

id
��

H i
ét(X,Ql) H i

ét(Y,Ql)
f∗oo
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(ii) H i
ét(X,Ql) = 0 for i > 2d, where d = dim(X).

(iii) If X is smooth, then all Ql-vector spaces H i
ét(X,Ql) are finite dimensional.

(iv) Poincaré duality holds i.e. there is an isomorphism H2d
ét (X,Ql) ' Ql and for any

i ≤ d there is a perfect pairing

H i
ét(X,Ql)×H2d−i

ét (X,Ql)→ H2d
ét (X,Ql) ' Ql.

(v) The Lefschetz fixed point formula holds: For a morphism f : X → X of a smooth

algebraic varietyX, such that the fixed locus Fix(f) is finite and 1−df is injective

at fixed points (or equivalently, fixed points have multiplicity one) the following

formula holds:

# Fix(f) =
2d∑
i=0

(−1)i tr
(
f ∗ | H i

ét(X,Ql)
)
,

where f ∗ | H i
ét(X,Ql) means an induced homomorphism f ∗ : H i

ét(X,Ql)→ H i
ét(X,Ql).

(vi) The Künneth decomposition formula for product of two varieties X and Y holds:

H i
ét(X × Y,Ql) '

⊕
j+k=i

Hj
ét(X,Ql)⊗Hk

ét(Y,Ql).

(vii) A comparison theorem with singular cohomology holds: if X is a smooth, pro-

jective variety over C, then there is isomorphism of C-vector spaces:

H i
ét(X,Ql)⊗Ql C ' H i(X,C).

Let X be a d-dimensional Calabi-Yau manifold defined over Q. For a given prime

p, denote by Frobp the Frobenius morphism i.e.

Frobp(x1, x2, . . . , xn) = (xp1, x
p
2, . . . , x

p
n) for any (x1, x2, . . . , xn) ∈ Xp.

The Lefschetz fixed point formula yields

Npr =
2d∑
i=0

(−1)i tr
((

Frobrp
)∗ | H i

ét(X,Ql)
)
.
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We define polynomials

(1-1) Pi,pr(t) := det
(
1−

(
Frobrp

)∗
t | H i

ét(X,Ql)
)
.

Recall a well known lemma from linear algebra:

Lemma 5.1.4. Let f be an endomorphism of finite dimensional vector space V. Then

∑
n≥1

tr (fn | V )
tn

n
= − log det(1− ft).

From 5.1.4 we easily deduce that

Zpr(t) =
P1,pr(t) · P3,pr(t) · . . . · P2d−1,pr(t)

P0,pr(t) · P2,pr(t) · . . . · P2d,qpr(t)
,

in particular polynomials from (1.1) coincide with polynomials defined in Riemann

hypothesis (iii) in 5.1.3.

Now we define i-th L series of X by the following rule:

L
(
H i

ét(X,Ql), s
)

:= (∗)
∏
p∈P

1

Pi,p(p−s)
,

where P is the set of primes of good reduction and (∗) denotes suitable Euler factors

for the primes of bad reduction. Usually, the d-th L series L
(
Hd

ét(X,Ql), s
)
we denote

by L(X, s). Deligne’s proof of the Riemann hypothesis 5.1.3 follows from the following

theorem:

Theorem 5.1.5 (Deligne integrality theorem, [Del74, Del80, Esn06]). Let X be a

smooth projective variety defined over the field Fq, where q = pk is a prime power.

Then, for all i and l 6= p the eigenvalues of
(
Frobkp

)∗
on the vector space H i

ét(Xq,Ql)

are algebraic integers of absolute value qi/2.

In our purpose we are mainly interested in third L series of Calabi-Yau threefold

X. In that case the Dirichlet expansion of L(X, s) gives coefficients ak(X) such that

L(X, s) =
∞∑
k=1

ak(X)

ks
, a1(X) = 1, ap(X) = tr

(
Frob∗p | H3

ét(X,Ql)
)
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and ak(X) depends on ap(X) for every prime divisor p of k.

By [Esn06] there exists κp(X) ∈ Z such that

(1-2) tr
(
Frob∗p | H2

ét(X,Ql)
)

= κp(X)p

and by Poincaré duality

(1-3) tr
(
Frob∗p | H4

ét(X,Ql)
)

= κp(X)p2.

By the Lefschetz fixed point formula we see that

Np = 1 + tr
(
Frob∗p | H2

ét(X,Ql)
)
− ap(X) + tr

(
Frob∗p | H4

ét(X,Ql)
)

+ p3,

hence by (1-2) and (1-3) we infer that

ap(X) = 1 + p3 + (p+ p2)κp(X)−Np

depends on numbers of Fp-rational points of X.

5.1.3 Modular forms

The group Sl2(Z) is called a full modular group, this group acts on the Siegel upper

half plane H via: (
a b
c d

)
: H 3 τ → aτ + b

cτ + d
∈ H.

Subgroups

Γ0(N) :=

{(
a b
c d

)
∈ Sl2(Z) : c ≡ 0 (mod N)

}
for N ∈ N

are called Hecke congruence subgroups of Sl2(Z).

Definition 5.1.6. An unrestricted modular form of weight k for Γ0(N) and level N

is a holomorphic function f : H→ C such that for any
(
a b
c d

)
∈ Γ0(N) the following

holds

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for τ ∈ H.
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Since
(

1 1
0 1

)
∈ Γ0(N), the function f is a periodic function i.e. f(τ + 1) = f(τ),

for τ ∈ H. Hence it has a Fourier series expansion:

f(τ) =
+∞∑

n=−∞

cnq
n, where q = e2πiτ .

An unrestricted modular form f is called a modular form if cn = 0 for n < 0 and a

cusp form if additionally c0 = 0.

On the vector space Sk(Γ0(N)) of weight k cusp forms for Γ0(N) we can define

operators Tp for prime numbers p - N , which are called Hecke operators (for details

see [DS05, Kna92]). One can prove that for distinct primes p, q, operators Tp and Tq

commute and all Tp have the same eigenspaces. The form which is an eigenvector of all

Tp is called Hecke eigenform. Thus for any Hecke eigenform g and prime number p - N,

there are integers bp such that Tp(g) = bpg. There exist a minimal number N ′ | N and

Hecke eigenform h ∈ Sk(Γ0(N ′)) with Fourier expansion:

h(τ) =
+∞∑
n=1

cnq
n, where cp = bp for all p - N.

The eigenform h such that c1 = 1 is called normalized Hecke newform. To a normalized

Hecke newform f =
+∞∑
n=1

anq
n we can associate an L-function

L(f, s) :=
+∞∑
n=1

anq
−s,

which is in fact a Mellin transform of f.

5.1.4 Modularity of rigid Calabi-Yau threefolds

A lot of research on Calabi-Yau threefolds was motivated by the following conjecture:

Modularity conjecture 5.1.7. Let X be a rigid Calabi-Yau threefold defined over Q.

Then X is modular, i. e. there exists a weight 4 cusp form f for Γ0(N) such that

L(X, s) = L(f, s).
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Moreover, the level N is divisible only by primes of bad reduction.

In [DM03] L. Dieulefait and J. Manoharmayum proved the modularity conjecture

for all rigid Calabi-Yau threefold defined over Q with some assumptions on primes of

bad reduction.

Theorem 5.1.8 (L. Dieulefait, J. Manoharmayum, [DM03]). Let X be a rigid Calabi-

Yau threefold defined over Q, and assume that one of the following conditions holds:

(i) X has good reduction at 3 and 7,

(ii) X has good reduction at 5,

(iii) X has good reduction at 3 and the trace of Frob3 on H3
ét(X,Ql) is not divisible

by 3.

Then X is modular.

Later, L. Dieulefait in [Die05] improved the above result and deduced some stronger

modularity results. In particular he observed that any rigid Calabi-Yau threefold de-

fined over Q with good reduction at 5 is modular.

Finally the conjecture 5.1.7 was obtained in [GY11] from the proof of Serre’s con-

jecture on Galois representations over finite fields given by C. Khare and J.-P. Win-

tenberger; see [KW09a, KW09b]. However the question asked by B. Mazur and D.

van Straten — which modular forms can be realized as a modular form of some rigid

Calabi-Yau threefold, is still open.
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5.2 Double octics

Let π : X → P3 be a double covering of P3 branched along an octic surface D. If D is

smooth then X is a smooth Calabi-Yau threefold (see [CS98]), if D is singular then X

is also singular, and the singularities of X are in one-to-one correspondence with the

singularities of D. The singularities of X can be resolved by a sequence of the so called

admissible blow-ups with smooth centers.

Topology of nodal double solids was studied by C. H. Clemens in [Cle83], where

he considered surfaces of even degree as a branch locus. S. Cynk and T. Szemberg in

[CS98] defined octic arrangement and studied new aspects of double coverings branched

along it.

Definition 5.2.1. Let S1, S2, . . . , Sr denote surfaces in P3 of dimensions di (1 ≤ i ≤ r)

respectively, where d1 + d2 + . . . + dr = 8. We call a sum S := S1 ∪ S2 ∪ . . . ∪ Sr an

octic arrangement if the following conditions hold

(i) for any 1 ≤ i 6= j ≤ r the surfaces Si and Sj intersect transversally along a smooth

irreducible curve Ci,j or they are disjoint,

(ii) the curves Ci,j, Ck,l either coincide or intersect transversally.

We say that an irreducible curve C ⊂ S is a q-fold curve if exactly q of surfaces

S1, S2, . . . , Sr pass through it. A point P ∈ S is called a p-fold point if exactly p of the

surfaces S1, S2, . . . , Sr pass through it.

Theorem 5.2.2. Suppose that octic arrangement S contains only

(i) double and triple curves,

(ii) q-fold points for q = 2, 3, 4, 5,
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then the double cover of P3 branched along S has a smooth model, which is a Calabi-Yau

threefold.

Proof. The resolution of singularities is constructed in the following way

1. Blow-up of fivefold points. As the new branch divisor we take the strict transform

of the branch divisor plus the exceptional divisor. This introduces five double

lines (lying on the exceptional divisor) and a fourfold point on each triple curve

passing through that point. The following pictures describe a configuration of

lines in the exceptional divisor P2, given 0, 1 and 2 triple curves at the beginning.

P
2

No triple curve

P
2

One triple curve

P
2

Two triple curves

2. Blow-up of triple curves. As the new branch divisor we take the strict transform

of the branch divisor plus the exceptional divisor. We get three copies C1, C2, C3

of the blown-up curve C as double curves. Moreover every fourfold point lying

on that curve gives rise to a double line. Thus in the exceptional divisor C × P1,

except Ci’s, we have also lines L1, . . . , Lt, where t is the number of fourfold

points.
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C ×P
1

L1 L2 L3 Lt

C2

C1

C3

: : :

3. Blow-up of fourfold points. We take the strict transform of the branch divisor as

the new branch divisor. This operation does not introduce new singularities. In

the exceptional divisor we get the following configuration:

P
2

4. Blow-up of double curves. As the new branch divisor we take the strict transform

of the branch divisor. Observe that there is no other singularities and arrange-

ments triple points disappear.

L1 L2 L3 Lt

C1

C3

: : :

Ruled surface over C
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In our further research we are interested in octic arrangements consisting of eight

planes in P3.

5.3 Rigid realizations of modular forms

5.3.1 Involutions of double octic Calabi-Yau threefolds

Let S ⊂ P3 be an octic arrangement consisting of eight planes such that no six intersect

and no four contain a line.

A crepant resolution described in 5.2.2 is not uniquely determined but depends

on the order of double lines. We can avoid this difficulty replacing the blow-up of all

double line separately with the blow-up of their sum in the singular double cover. Now,

by the universal property of a blow-up, every automorphism φ of the projective space

P3 preserving incidences of eight planes, induces an automorphism φ̃ of the double

octic X.

Proposition 5.3.1. Let φ be an automorphism of the projective space P3 of order two

such that

(i) the fixed locus of φ contains no double nor triple line of S,

(ii) planes intersecting in fourfold point are not invariant by φ,

(iii) a fixed line of φ intersects S with odd multiplicity in at most two points.

Then the fixed locus of the induced involution φ̃ : X → X contains no curve with positive

genus.

Proof. Our strategy is to perform the resolution and after each step verify that the

fixed locus of the lifting of φ to the partial resolution contains no irrational curves. We

start with the (singular) double covering of P3 branched along S. Any fixed curve of

the involution must be mapped to a fixed line of φ in P3, if this curve is irrational then,
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by the Riemann-Hurwitz formula, the line intersects S with odd multiplicity in at most

four points. This contradicts the second assumption, which in fact is necessary.

The next step of the resolution is the blowing up of all fivefold points in the base

of double covering, new branch divisor is the strict transform of S plus the exceptional

divisors. So any fixed curve of the involution is either birational to a fixed line in pre-

vious step or is a fixed line of the induced involution on a projective plane (isomorphic

to an exceptional plane of the blow-up). At this step we introduce new double lines:

intersections of the exceptional locus with strict transforms of the five planes.

P
2

l1

l2 l3

l4

l5

Fig. 1

The involution is not the identity on the P2

because otherwise we will get a fixed divisor in

the double octic. If one of the double lines is fixed

(dashed line l1 in the Fig. 1), then the fixed locus

on P2 consists of l1 and an isolated point. On

the other hand on each line l2, . . . , l4 we have at

least two fixed points, hence the other four lines

intersect, which is impossible.

In the next step of resolution we blow up triple lines and as in the case of a fivefold

point we add the exceptional divisors to the branch divisor. In the exceptional divisor

we get the following configuration:

l1

l2

l3

k1 k2 k3 : : : kt

P
1
× P

1

where t denotes the number of fourfold points on that triple line.
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Consequently any fixed curve is a vertical line (dashed line in the picture) and so

it is rational. Again we introduce new double lines: l1, l2, l3 and k1, k2, . . . , kt (solid

lines in the picture). Suppose that the line ki is fixed. Then we get four invariant

planes: three planes containing ki and one transversal to them, which leads to the

contradiction with assumption (ii).

Now, we blow-up all fourfold points, this time we do not add the exceptional divisors

to the branch divisor. In the exceptional divisor over a fourfold point P we get the

following configuration:

P
2

l1

l2
l3

l4

and in the double cover we get a double covering of P2 branched along the four solid

lines. Any irrational fixed curve of the involution maps to a fixed line of involution on

P2 (a dashed line in the picture), it is not of the other lines l1, . . . , l4 because over each

of them the double cover is an isomorphism.

In particular the involution on P2 is not identity, its fixed locus consists of the

dashed line and an isolated point. As an involution of a projective line has two fixed

points the lines l1, . . . , l4 intersect and consequently the four planes passing through

the fourfold point intersect along a line, which contradicts our assumptions.

Now the singular locus of the branch divisor is a union of double lines, some of

them were introduced in the previous step, but none of them is fixed by the involution.

In the last step we blow-up the sum of the double lines in the (singular) cover, a fiber

of the blow-up is a line at a double point or a sum of three concurrent lines at a triple
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points. Since every fixed line is birational to a fixed line from the previous step of the

resolution or a line (component of a fiber) the assertion of the proposition follows.

5.3.2 Applications

In [Mey05] C. Meyer gave a list of 63 one-parameter families of double octics {Xτ}τ∈P1

with h2,1(Xτ ) = 1. Using an extensive computer search he found 18 examples in 11 fam-

ilies (see [Mey05], table on page 54) such that for all primes p ≤ 97 the trace of Frobp

equals ap + pbp, where ap and bp are the coefficients of cusp forms f4 and f2 of weight 4

and 2, respectively. This gives a strong numerical evidence of the modularity of X in

the following sense: the semi-simplification of the Galois representation on H3(X) de-

composes into two-dimensional pieces isomorphic to Galois representations associated

to f4 and f2. Equivalently, the L series of X factors as L(X, s) = L(f4, s)L(f2, s − 1)

(see [HV05, HV06]). In fact modularity of all examples except Arr. no. 154 was proved

in [CM08].

Remark 5.3.2. Different elements from Meyer’s table with the same arrangement type

are in fact isomorphic with a quadratic twist compatible with twists λ in table [Mey05].

For an Arr. no. 4, from [CC17] we find that the map
x
y
z
t
u

 7→


ABy + ABz
−ABy

(−A2 + AB)x+ (−A2 + AB) y − A2z + (A2 − AB) t
(AB −B2) t

A3B3(A−B)2u


which gives an isomorphism (overQ) betweenX(A:B) and the quadratic twist ofX(A−B:A)

by −A(A−B). In particular X(1:−1) and X(1:2) are isomorphic, they are also isomorphic

to the quadratic twist of X(2:1) by −2. Since the cusp forms 32k4A1 and 32A1 have

CM by
√
−1 the quadratic twists by 2 and −2 coincide. Similar transformations exists

also for Arr. no 13, 249 and 267.
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Theorem 5.3.3. Let X be a Calabi-Yau threefold from Meyer’s table corresponding to

Arr. no. 4, 13, 21, 53, 244, 267, 274. Then there exists a symplectic involution φ on

X and a crepant resolution Y of a quotient X/φ, which is a rigid modular Calabi-Yau

threefold.

Proof. By the remark 5.3.2 for each arrangement type in the theorem we can consider

only one example. For all examples, we shall find a transformation g : P1 → P1, which

has an isolated fixed point τ0 such that g′(τ0) = −1 and isomorphisms φ̃τ : Xτ → Xg(τ)

for which φτ0 is a symplectic involution satisfying conditions of 5.3.1.

In the table Tab.1 we give an involution φτ and the transformation g.

Arr. no. g τ0 φτ (x, y, z, t, u) Cusp form

4 1/τ −1
(
Ay + Az,−Ay,Ax+ Ay,Bt, A3Bu

)
32k4A1

13 1/τ 1
(
Bz,By,Bx,At,−AB3u

)
32k4A1

21 (−1− τ)/τ −1/2

(
(A+B)x+ (A+B)y, (−A−B)y,

(−A−B)z, Ax+ (A+B)y +Bt,

(A+B)3Bu
) 32k4B1

53 1/τ 1 (Ay,Ax,−Bt,−Bz,A2B2u) 32k4B1

244 1/τ −1 (Bx,By,At, Az,−B2A2u) 12k4A1

267 1/τ −1 (t,−z,−y, x, u) 96k4B1

274 1/τ 1 (z,−t, x,−y, u) 96k4E1

Tab. 1

Since τ0 is a fixed point of g the weighted projective transformation φτ0 induces

an automorphism φ̃τ0 of Xτ0 that transform ω to λω where λ is the quotient of the

determinant of the transformation on P3 by the coefficient in front of u. For each of

the cases in the table Tab.1 we compute λ = 1, so the involution φ̃τ0 is symplectic.

The action induced by φ̃τ0 on H1,2(Xτ0) is given, via the Kodaira-Spencer map,

by the multiplication by g′(τ0), thus H1,2(Xτ0)
〈φ̃τ0 〉 = 0. The quotient Xτ0/φτ0 admits



Chapter 5. Modularity of double octics 69

a crepant resolution Yτ0 by blowing-up of double lines. From the special case of an

orbifold formula (see [CR04]) we have the following formula

H1,2(Yτ0) ' H1,2(Xτ0)
〈φτ0 〉 ⊕

⊕
C∈Fix(φτ0 )

H0,1(C),

where Fix(φτ0) consists of curves, which are fixed by the involution φ̃τ0 . Proposition

5.3.1 yields that Yτ0 is a rigid Calabi-Yau manifold defined over Q. From the involution

we get a monomorphism H3(Yτ0) → H3(Xτ0), so the modularity (and the cusp form)

of Y follows from the modularity of X.

Remark 5.3.4. According to our knowledge the last two examples in 5.3.3 give first

rigid Calabi-Yau realizations of modular forms 96k4B1 and 96k4E1.



70 5.3. Rigid realizations of modular forms



BIBLIOGRAPHY

[ALR07] Alejandro Adem, Johann Leida, and Yongbin Ruan. Orbifolds and

stringy topology, volume 171 of Cambridge Tracts in Mathematics. Cam-

bridge University Press, Cambridge, 2007.

[AS15] Michela Artebani and Alessandra Sarti. Symmetries of order four on K3

surfaces. J. Math. Soc. Japan, 67(2):503–533, 2015.

[AST11] Michela Artebani, Alessandra Sarti, and Shingo Taki. K3 surfaces with

non-symplectic automorphisms of prime order. Math. Z., 268(1-2):507–

533, 2011. With an appendix by Shigeyuki Kondō.
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